PDP-1 PROGRAM LIBRARY

NUMBER: Digital-1-18-S
NAME: Expensive Desk Calculator
AUTHOR: Robert A. Wagner - MIT
DATE: January 2, 1963
SPECS: Uses all of memory
RIM
NEEDED: Typewriter
ABSTRACT: EDC provides for performing arithmetic operations on numbers typed

either on or off line, and printing results. Decimal numbers (integers,
decimal fractions or integer-fraction combinations) are acceptable; all
indicated by ordinary decimal point conventions. EDC allows the internal
storage of "variable" registers. The names of such registers, when used

in the same contexts as typed numbers, automatically cause their current
contents to be used in the calculation, as if the contents had just been
typed in. EDC stores arbitrary character strings for later use as input to

EDC, and for testing the sign of partial results.

1

LIBRARY

Digital-1-18-S
Page 2

EDC provides means for performing arithmetic operations on numbers typed either on or off

line, and printing results. Decimal numbers consisting of integers, decimal fractions or integer-
fraction combinations are acceptable, all indicated by ordinary decimal point conventions.

The output of EDC is essentially the same format. In addition, EDC allows the internal storage
of often used quantities and of partial results, in named "variable" registers. The name of such
registers, when used in the same contexts as typed in numbers, automatically cause their cur-
rent contents to be used in the calculation, as if the contents had just been typed in. In addi-
tion, means for storing arbitrary character strings for later use as input to EDC, and for testing
the sign of partial results are all provided.

SIMPLE COMPUTATIONS:

1. Numbers: A number is a string of digits of any length <39, which may or may not include
a decimal point. If a decimal point is present, it may appear anywhere within the digit string,
or at either end of it. A number which does not contain a decimal point is treated as an integer.

2. Operators: An operator is one of the special characters + | space |- | / | x. (Note:
the Q%EI_"[" means "or".) The meaning of each of these operators is as follows:
Operator Meaning
+ or <space> add
- subtract
% multiply
/ divide

These operators can be used to cause EDC to perform arithmetic operations on numbers.

3. Accumulator: EDC, like many desk calculators, contains an internal "working" register
where results are accumulated. The register may be cleared to zero by typing <carriage re~
turn>. Alternatively, its contents may be typed out before it is cleared. This is accomplished
by typing <tab>.

At this point sufficient concepts have been introduced to allow the user to perform arithmetic
operations on numbers he types in and to obtain correct results.

An expression in EDC consists of several numbers separated by operators. Each operator uses
as one of its two arguments the number typed immediately after it. (If no number is type b
=

LIBRARY

Digital=1-18-5
Page 3

zero is assumed). Since not all the operators listed above associate, it is necessary to define
the order in which operations are performed when more than one operator appears in an ex-
pression. Within any expression all multiplications and divisions are performed before any
additions and subtractions. Except for this rule, all operations take place from left to right.

Examples of valid expressions:

Expression Meaning Equals
-1 -1 -1
2.x3-4 (2x3)-4 2
~6x3/7 ~((6x3)/7) -2.571
100-3x4/9+6 100-((3x4)/9)+6 104 .667
4x9/7x11 ((4x9)/7)x11 56.573

DECIMAL DIGITS

The number of digits to the right of the decimal point in a number defines the number of dec-
imal digits in the number. The number of decimal digits in the result of any computation is
always the larger of:

(a) the number of decimal digits retained in the expression at the time the computation
is performed, and

(b) the number of decimal digits in the argument of the operator specifying the compu-
tation.

This is particularly important in the case of division. The division operation rounds the quo=
tient produced to the number of decimal places specified in the above rule. Thus,

(a) 1/2 yields Xs

(b) 1.0/2 ! D3

() 1/2.000 " .500,
(d) .0000+1/2 " .5000,
(e) 1/2+.0000 e 1=

In example (a) both the 1 and 2 are specified to zero decimal places. The answer, 1, is

really .5 correctly rounded to zero decimal places. In examples (b) and (c) one of the factors
was specified to more than zero decimal places. The answer is computed accurate to a number
of decimal places equal to the larger of the number of decimal places specified in either factor.
In example (d) the .0000 specifies that the expression is hereafter to retain 4 decimal places.
Hence the division is accurate to 4 places. Example (e) illustrates what appears to be an

TSR IR

1

LIBRARY

Digital-1-18-S
Page 4

inconsistency . However, at the time the division is performed, the numbers 1 and 2 are ac-
curate to only 0 places. When the .0000 is typed, the result of the division is all that remains
of the original 1 and 2. Thus the quotient cannot be re-evaluated and remains rounded to
zero places when the .0000 is added in. Moral: Type a number which specifies the number
of decimal digits retained in a division before attempting the division.

SIGNIFICANCE:

In example (d) above, the number of decimal places to be retained in future computations was
specified by typing " .0000" as the first number in the expression. An exactly equivalent oper-
ation which allows the user to conveniently specify the number of decimal places to be retained
in all succeeding computations is provided. Typing NS, where N is some integer less than 40,
causes all succeeding computations to retain results accurate to ﬁ decimal digits.

PARENTHESES:

Any expression may be enclosed in parentheses. As in algebra, the value of expressions en~-
closed in parentheses is computed before operations outside the parentheses are performed.
Actually, in EDC typing (EXPRESSION) is equivalent to typing a number equal in value to
the value of EXPRESSION,

VARIABLES:

EDC provides means for storing intermediate results internally and using the stored results in
later computations. This is accomplished by means of a notation called "variables". In form,
a variable consists of a string of letters of arbitrary length. (Actually only the last 3 letters
are significant.) A quantity may be placed in a variable (and the variable "defined") by

typing:

NUMBER, NAME, where NUMBER is a number or its equivalent, and NAME is a string of
letters. This causes the value of NUMBER to be stored in the variable NAME. The number
may appear as a part of an expression. More of the expression may follow the variable def-
inition. In particular, another variable definition may store the same number in still another
variable . Note: The storing is not accomplished until some character other than a letter is
typed following the first letter in the name. If the name is mistyped, it may be deleted by
typing an overbar () before any non-letter is typed.

Once a particular name has been used as the name in a variable definition, it may be used as
an equivalent to a number. The value of this type of number equivalent is the contents of the
variable at the time it occurs in an expression. If it appears again as a name in a variable
definition, the new number replaces the old contents of the variable.

Digital-1-18-S
Page 6

Note:
(-1),a puts =1 in a

-1,a puts +1 in @, since the variable definition operates on the
~ last number typed before the comma.

Once a is defined as a variable, (a+1), a is legal, causing the contents of register a to be
increased by 1.

The following is also legal and is a number:

(t-1/(n+2),n=1/(n+2),nt),t)
(Assuming, of course, that n and t had been previously defined.)
In order, the above expression

(1) adds the old value of t into the number being computed

(2) incrementsnby2

(3) inverts (takes the reciprocal of) this new value of n

(4) again increments n by 2 =

(5) subtracts the inverse of this new value of n from the first computed inverse
(6) adds to this difference the old value of t —

(7) stores the new value int -

(8) subtracts this new value of t from the old value saved previously .

ITERATION:

A simple means is provided for allowing EDC to repeat a procedure several times and stop
automatically. This feature is provided through the brackets < and >. If S is an arbitrary
string of characters (which may include bracket pairs <...>), ending in a number, n, then

<S>

will cause the string S to be re-interpreted each time n is computed and found to be negative.
NOTE: Zero is positive in the arithmetic scheme used by EDC.

For example,

0,t

("1),"
<(1/(n+2),n-(1/(n+2),n) k+t),t
(~k)>

1

LIBRARY

Digital-1-18-5
Page 7

computes pi/4 by the formula
pi/A=1-1/3:1/5-1/7.

The result is left in register t. The computation terminates when the value of 1/n is computed

to be zero. This will, of course, be dependent on how many digits the significance level is
set to.

MACROS:

It is often convenient to have some means of remembering some sequences of operation. In
EDC, provision is made for abbreviating arbitrary strings of characters by completely independ-
ent names. These names, when expanded, supply the original string of characters automatically
from memory to the rest of the processor. Thus often-used sections of the major computation
need be typed only once. Whenever the particular computation is needed, it can be performed
by merely stating the abbreviation chosen to designate this particular computation.

In order to define an abbreviation of "MACRO", type the desired name followed by a middle
dot (.). EDC will shift into red and enter the MACRO DEFINE MODE. In this mode no com-
putations are done. Instead each character typed is entered into storage. All characters
except middle dot, overbar and backspace may be so entered for later interpretation when the
macro is expanded. The three characters which cannot be entered into storage each have
special functions in this mode. Middle dot is the character used to leave the MACRO DEFINE
MODE. The other two characters are provided to facilitate correcting long or involved
MACRO's. Backspace is to be used to delete characters, one by one, from the stored char-
acter string.” Each typed backspace causes the last remaining character in this macro's storage
area to be deleted. Overbar has a function analogous to the "start read" key on a Flexowriter.
If the particular abbreviation chosen for the macro has been previously defined, the new def-
inition will completely replace the old. However, while the new definition is in progress,

an overbar will cause the first character in the old definition's string to be typed, deleted
from the old definition's string, and added to the end of the new definition's string. If the
end of the old definition is reached, an overbar will be typed but will not enter the new def-
inition's string. If sense switch 2 is on after a character is entered in the new buffer, EDC
acts as if overbars were given until the switch is turned off. This allows rapid copying of the
remaining portion of an old definition.

Once a MACRO has been defined, it may be expanded by mentioning its name at any time,
followed by some character which is not a letter. This character, the "break" character, will
not be interpreted immediately. Instead, it will appear as the character following the last
character in the MACRO expansion. Normally, when a MACRO is being expanded, the char-
acters in the expansion are typed out on-line. This may be suppressed by turning on sense

Digital-1-18-S
Page 8

switch 3. In fact, whenever EDC is in the "automatic" mode, either as the result of iterations
or macro expansions, sense-switch 3 on will suppress type-out of the characters being spilled.

OTHER OPTIONS:

Paper tapes prepared on the standard FIO-DEC flexowriter may be used as input to EDC in
place of the on-line typewriter. When sense-switch 1is ON and some character is typed (to
cause EDC to leave its typewriter listen loop), EDC will read characters from a flexo tape in
the reader until a stop-code is reached. These characters will be acted on exactly as if they
came from the typewriter keyboard. When a stop-code is reached, EDC returns control to
the listen loop, allowing the user to turn SST off or to type some character.

A number may be immediately followed by an exponent, indicating that the number represented
is the number typed, multiplied by 10 (decimal) raised to the indicated power. The form of an
exponent is

E<SIGN><DIGITS>
where <SIGN> is +, SPACE, -, or is not present

and <DIGITS> is a string of digits, representing a decimal integer.

At least one digit should appear in the string <DIGITS> if the resultant number is to be followed
with a sign.

Any number, or number equivalent may have an exponent supplied to scale its values by inte-
gral powers of ten. However, it should be noted that the value of the exponent is subtracted
from the number of decimal places in the number typed immediately before the E. The effect
of E is thus merely to move the decimal point.

Note: <DIGITS> must be an integer and will be taken modulo 216.

FIELD SIZE CONTROL

Some control is provided over the total number of digits printed before an E by EDC, This is
accomplished by a field size character, F, inthe context <KNUMBER> F. Hence, number must
be an integer <40. The new print field size becomes effective when an F is encountered and
remains effective until a new F is typed.

The output number is correctly rounded to the digits printed, and the position of the decimal
point is correct as printed, modified by the signed number following any output E, just as on
input. Note: This control is approximate because rounding of a number like .99998 to 4

LIBRARY

Digital-1-18-S
Page 9

printed digits causes an extra digit to be introduced. Thus, the above number will print as
1.0000. In addition, any number which prints as 1, followed by no digits other than zero,
will have an extra digit printed. For example, if the current field size is 4, the number
1.00000 will print as 1.0000 although the number 1.01000 prints as 1.010.

One possible use for macros is in computing and printing several results in a specified order.
For example, suppose that a table of values for the function

y=x2+ 3x+ 4

is to be computed for values of x ranging from 0 to 100 in steps of 1. This particular problem
can easily be solved by using the iteration brackets. One might try:

0,x
x tab xXx+3x+4 Ekl ((x+1),x=101)

and EDC will cooperate by typing a single column of alternate values of x and y (with SS3 on):

It is obvious that means for listing values in position other than at the far left edge of the
paper would be desirable. The operators =, UCTAB and UCCAR are provided to assist in this

formal control. = is an operator similar to TAB in its effect == that is, it causes a numerical
typeout. However,

1) it types the "number" typed immediately before the =, rather than the
expression, as does TAB

2) no carriage return is typed following the digits

3) the "accumulator" is not cleared by the =. UCTAB and UCCAR (tab or carriage
return typed in upper case) are ignored by the processor, but type a tab or

PDP

Digital=1-18-S
Page 10

carriage return regardless of the position of S53. Using these new operators, the
problem can be re-solved as follows:

0,x
Q:UCTAB
xXx+3x+ZIEE ((x+1),x=101)>

Now, although a table of values in acceptable form has been produced, the first value of x
and that of y are found intermixed with portions of the user's typing. To help sort them out
and to preserve the completed program for further use, the entire character string typed by the
user could be defined to be a macro called, say, POLY:

poly-0,x
<x=UCTAB CARR
XX x+3x+4 tab ((x+1),x=101)>

Among other advantages, defining the string as a macro allows use of the macro editing sense
switches to correct typographical mistakes.

MACROS AS FUNCTIONS:

A properly defined macro can operate in EDC as if it were a number (of type variable for pur-
poses of implied multiplication). In addition, it is possible for a macro to take one argument
from the expression in which it is used. Thus, for example, it is possible to define a macro
which replaces the last number typed with that number's absolute value. The general tech-
nique is to write a macro whose first operation is that of storing the last number in a unique
variable. For example, the definition

name; x<+(-x),x>
allows

(a=b) name

to compute the absolute value of the number (a-b), leaving the result in x. This occurs be-
cause the string of characters represented by the abbreviation name is:

S X<H(=x), x>
Hence, typing (a-b) name is equivalent to typing

(a=b) ,x<+(=x), x>

Digital-1-18-S
Page 11

The iteration <+(-x),x> changes the sign of the contents of variable x repeatedly until the
sign is positive.

Note: the plus sign following the < is provided to avoid the useless computation of -xXx
which would result wherever x was originally positive. Addition in EDC is somewhat faster
than multiplication and should be the preferred operation. One difficulty with this macro is
that it fails to supply the result in a convenient form for further computations. Two operators
have been provided which simplify the operation:

N, and C
Both are "deletion" operators and may be so used even outside macros.

N zeros the lost number typed.

C zeros the current expression only back to the last unpaired open parenthesis.
(The rest of the current expression is untouched.)

Using these operators, the macro "name" can be rewritten as follows:
name ;x N(<+(=x) ,x>Cx)

Using this definition of "name", let us follow EDC's computation of
(T)name

The character string seen by the processor is, in effect:
(1), xN(<+(=x) ,x>Cx)

After the N is interpreted, the value of x is 1. and the accumulator contains zero, giving

the effect that no number was typed since the operator which preceded the (1). In effect,
then, the number (1) has been deleted from the string seen by the processor, although the value
of this number is safely preserved in x. Now, the computation inside the parentheses is per-
formed, and when the C is interpreted, the sum is deleted from the accumulator without af-
fecting the value of any part of the expression which was typed before the first. Since the
"answer" is contained in x, x is now added into the expression, and the parenthesis count is
reduced to its value before the macro was spilled.

Using the definition of "name", either
10(a=b)name
or ((a-b)name)10

Digital-1-18-S
Page 12

computes 10 times the absolute value of (a-b).

Similarly, (a=b) name/3 computes one-third the absolute value of (a=b).

Given the following two macro definitions, "sqr" becomes a square root function:
aa;xx N(<H(=xx) , xx >C-xx) .
sqr;xN(x, y<tx/y) .5) , z+(y=z, y)aa>Cy) .

Now the number 9sqr has the same value (to the number of figures specified by the last S
operation) as does 3.

1

LIiIBRARY

	DEC.pdp_1.1963.102650084 17.pdf
	DEC.pdp_1.1963.102650084 18.pdf
	DEC.pdp_1.1963.102650084 19.pdf
	DEC.pdp_1.1963.102650084 20.pdf
	DEC.pdp_1.1963.102650084 21.pdf
	DEC.pdp_1.1963.102650084 22.pdf
	DEC.pdp_1.1963.102650084 23.pdf
	DEC.pdp_1.1963.102650084 24.pdf
	DEC.pdp_1.1963.102650084 25.pdf
	DEC.pdp_1.1963.102650084 26.pdf
	DEC.pdp_1.1963.102650084 27.pdf

