
CONTROL DATA 6600 




CONSIDERATIONS I N  

COMPUTER DESIGN -

LEADING UP TO THE 

CONTROL DATAB6600 

by JAMES E. THORNTON 

CONTROL DATA CHIPPEWA LABORATORY 



- - --

NO APOLOGY INTENDED 
Someone has said that the elephant can grow no 
larger because of the ratio of its volume to the 
surface area of its digestive system. On the theory 
that simplest reasons are best, this certainly ranks 
high on the list. I don't suppose that this explana- 
tion of an elephant's size is entirely accurate. How- 
ever, it illustrates the idea of an ultimate limit. 

Perhaps the steps can be traced in the evolution 
of the elephant which most affected its final limi- -

tation. I can imagine some steps aiding and some 
reducing the eventual size. Since the evolutionary 
model states that natural selection controls each 
step, the short-term corrections predominate. I 
have no idea what caused the elephant's tusks, 
for example. The first rudimentary tusks must have 
satisfied some early need. They evidently helped 
and were useful; therefore, they were selected. 
The tusks have no obvious connection with the 
elephant's maximum size, at least by the above 
theory. However, they may have been evolved in 
favor of another set of molars which could improve 
digestion. Or perhaps the roots of the tusks further 
limit the intake of food and internally displace the 
digestive tract, with a net reduction of the eventual 
size. This little fantasy follows the lines of the 
natural selection model, by which we attempt to 
explain what is going on. It may be that this model, 
invented by man, is most accurate when applied 
to man's machines, in which a similar situation is 
developing. I'm not really interested in larger 
elephants, but rather in faster computers. 

The quick fix 
The factors influencing the evolution of the com- 
puter are economic (what isn't), logistic, comfort, 
convenience, and any number of other conflicting 
preferences. Designers have moved through a 
series of "safe" improvements without seriously 
tampering with the original idea. The significance 
of each innovation is largely masked by the mystery 
and confusion surrounding complex machinery. 
Actually, a great deal can be accomplished by tak- 
ing each obstacle and applying a short term cor- 
rection to circumvent it. Really startling improve- 
ments in speed have come from the most innocent 
and deceptively simple corrections, Ingenuity of 
computer designers has made the "quick fix" the 
rule of the industry. The ability to do so much 
with the simple computer circuits leaves little ex- 
cuse for attempting almost any new combination. 
The net effect is computers with superficially sirni- 
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lar outward appearance (speed specification, spe- 
cial features, standard features ) but fundamentally 
different internal methods. 

There can be no argument with the desire for 
faster operation or more effective operation. Our 
principle of natural selection serves to weed out 
the weak ideas. A strong feature is easily accepted, 
copied, and re-copied without much change. Prob- 
ably a good rule of thumb for measuring success 
is the number of suggested changes -the fewer 
the better. On the other hand, following this rule 
obviously leads to including every desirable fea- 
ture ever mentioned. Lacking economic or elec- 
tronic reasons for rejecting a new addition, there 
may be another kind of reason. It has to do with 
the ultimate limits (something like the elephant) 
and leads to a wholly different approach to com- 
puter design. 

From the beginning, there was something clean 
and straightforward about the digital computer 
idea. One could visualize enormous potentialities 
of such machines. The extension of our brainpower 
was a clear possibility; indeed, very shortly a 
clear reality. It was easy to think of machines 
doing every routine computational job, large or 
small. The very principle of using numbers, with 
their almost unlimited resources, as the funda- 
mental internal controls further opened the pos- 
sibilities. However, it was psychologically a little 
too much to take at once. The temptation to plunge 
off without careful deliberation was countered 
with the reaction to do nothing really different. 
It was a choice of being a fool or a coward. Under 
the circumstances, the "safe" improvements looked 
rather good. We were encouraged to go on. 

Elementary, my dear 
The numerical instructions - the programs -were 
originally intended to provide desirable deviations 
in the computation quickly and easily. The com- 
puter designer could then concentrate on making 
the most of the fundamental computer parts with- 
out fear of these deviations. The original thought 
was to . . . ''make the machine elementary. The 
program will provide for the complex needs." The 
history of the computing machine has recorded 
some failure in this direction. The first special re- 
lief granted to a group who suffered from this 
elementary phase began a series of evolutionary 
phases. , 

It is basic to the computer ide lesn 
planner conceive the solution Se-

quence of elementary operations. He orders these 
elementary operations in the amount, sequence, 
and combination necessary to the solution. A major 
portion of the utility of the computer is the use 
of repeatable sets of these instructions, the repeti- 
tions or iterations of these sets themselves com- 
putable. The successful programmer seeks these 
iterative loops for a maximum amount of the solu- 
tion, knowing this to be faster, less wasteful, or 
otherwise more effective. Now, it is precisely in 
this area of maximum utility of the computer that 
the superficial likenesses between machines belie 
the internal differences to the detriment of the re- 
sults. A particular repetition on one machine fits 
its internal methods more exactly (and therefore 
more effectively) than the same repetition on an- 
other machine. The second would prefer a varia- 
tion in the sequence or combination of the elemen- 
tary operations making up the iteration. Plainly, 
the program should correct for this problem, leav- 
ing the designer freedom to devise the most 
effective machine possible. Again, the industry 
history has recorded some failure in this approach. 

The most important area of failure in choosing 
between what is to be elementary (or wired) and 
what is to be programmed lies in machine com- 
patibility. If there were only one machine and 
one set of elementary operations, and if the de- 
signer merely reproduced the machine, making 
it faster each time, there would be very little 
compatibility problem. The original program devi- 
ations and the original optimum iterations would 
hold. This overlooks, of course, the whole dimen- 
sion of improvement available at the elementary 
level. Even if one wanted this simplicity, the 
psychological atmosphere is against it. Programs 
must be made compatible by whatever means 
available. Here the idea of developing common 
language was most successful. The program was 
split into two levels, the original with sequences 
and combinations, and a second one with common 
language compatibility. Methods devised to trans- 
pose between the two levels could be adjusted to 
optimize for the specific internal needs of each 
machine. This was the original idea in an evolved 
form. This should have released the elementary 
operations for a more effective result. However, a 
movement to upgrade the machine to fit the new 
languages bids fair to neutralize this method. 

This sort of discussion of elementary versus "special 
effect" operations runs the risk of being lost in 



specific argument. Almost any kind of operation I 
can attract support for a time. Only history can 
select the good from the bad in the absence of 
specific economic, logistic, or other argument for Ior against. Therefore, it is not with any specific 
operation that argument can be successful. What 
remains to be done now is to clear away some of 
the growth and debris, leaving only those opera- 
tions which are truly fundamental or for which 
considerable potential can be demonstrated. The 
dependence on several levels of language should 
aid in this effort rather than trigger a series of 
new corrections to fit. In short, the original idea , 
was so good and so simple that we ought to start , 
again with our experience as a guide. The time is 
fast approaching when a really serious upper limit 
will be reached, a direct result of the speed of 
light limit of electrical signals on wires. 

What can be gained by simplicity? I know, of 
course, there remains the lingering doubt that 
simplicity is the answer. The computer must be 
effective, not merely fast. Without attempting to 
remove that doubt, let me discuss some effects 
of simplicity. The elementary level (wired-in oper- , 
ation) that I will consider fundamental includes I 

floating point arithmetic as well as the logical and ? 

fixed point manipulative operations. Something 
over one hundred distinct operations can be edited , 
down to about half that number for the machine's I 
elementary set of operations. From this set, it must 
be possible to construct the most complicated op- 
eration. It is obvious that some, if not the majority, 
of such complicated operations can be made faster 
by wiring them in. I propose to show how they 
cause other delays which may result in a net loss. 

A significant portion of the time of most elementary 
operations is absorbed in obtaining and identify- 
ing what to do. For two reasons, the simple in- 
struction set is desirable. The fewer instructions 
require a smaller instruction word, allowing more 
to be obtained at once from memory (a normally 
slow operation). The simplicity of all instructions 
allows quick and simple evaluation of status to 
begin execution. Both reasons add up to faster 
instruction acquisition. Notice that this applies to 
all instructions. Adding complication to a special 
operation, therefore, degrades a11 the others. Par- I 

I
ticularly in the newest computers with a high I 

degree of parallel operation, this instruction fetch 

and interpret time becomes a very significant 

percentage. 


Concurrently sequential 
Looking further into parallel operation, it is rea-

sonable that more and more of the sequential 

operations will give way to parallel. As a conse-

quence, more and more circuits are included in 


.the computer. Full utilization of the extra hard- 
+ 

ware demands that instructions be issued quickly 
and efficiently to the free areas for execution. In 
order to get several areas in operation concurrent- 
ly, the time for issuing must be substantially faster 
than the time for executing. This is precisely the 
area of fetch and interpret time. 
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For the repetitive iterations, mentioned earlier, 
which make up a large part of the computer's 
utility, this high speed issuing of instructions can 
be augmented by a high speed supply of instruc- 
tions. Since the very simple instructions can also 
be made efficient of instruction bits, more can 
be held at once. Holding complete iterations with- 
out need to reference memory offers a significant 
speed advantage, distinctly improved by simplicity 
in the instruction set. 

It is part of the theory of use of special wired 
instructions that many normally sequential oper- 
ations need not operate in sequence. The special 
instructions remove all but the essential sequential 
operations from the time sequence. The extras are 
performed in separate hardware not influencing 
the total time. This valuable technique can be ap- 
plied to whole sets of instructions if separate 
arithmetic and functional units are included in the 
computer. Assume about ten functional units, such 
as those in the central processor of the Control 
Data@6600. Next, assume that these units contain 
completely independent controls. Further, assume 
an over-all control system which can issue instruc- 
tions to these units, maintaining the necessary 
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sequence but allowing the "extra" operations to 
go forward without influencing the total time. It -
15 feasible with such a system to construct a more 
complex special instruction by programming its 
parts without sacrificing the special ability of the 
wired-in special instructions. To the degree that this 
technique is available in allprogram sequences, not 
just the special combinations, the entire program is 
speeded up. Let me continue to point out that the 
special instructions are first given up in order to 
obtain this very desirable effect. The extra hard- 
ware is merely distributed in a more general way. 

I mentioned the difference in internal methods 
from computer to computer. These methods, of 
course, are of little interest to the user except as 
they influence the final effectiveness of each pro- 
gram. In view of impending limits to speed, it may 
be fruitful to discuss some of the detailed methods. 
First, a look at the speed of light limit is in order. 
Among the several ways to interconnect the com- 
puter logic circuits, none exceeds about three- 
quarters of the speed of light. This translates to 
about 9 inches per nanosecond. A typical present- 
day computer wastes over ten per cent of its time 
traversing these interconnecting wires. Assuming 
factors of circuit improvement, in the future, of 
two to four times the present rates, one can see 
the dominating influence of these wires. This is 
a kind of reverse situation from our friend ele- 
phant. In order to reduce the wbe length, the total 
volume must come down at a much higher rate. 
Some reduction is possible, but the volume-to-area- 
to-linear dimensions are almost self-defeating. It 
should be very clear that no really startling speed 
improvements can be made on these wire trans- 
missions. Furthermore, each such improvement 
shortens the time when wire speed is a really 
difficult limit. 

Psychological barriers 
Computer circuits employ an intricate variety of 
methods. Such mechanisms as synchronism, se- 
quences of steps, static combinations, storage, etc., 
depend, at least partly, on the accuracy of the 
clock. To the waste of time on wires mentioned 
above can be added the tolerance of the clock, 
the ratio of longest untimed paths to the shortest, 
and a host of unnecessary periods of circuits wait- 
ing for completion in other circuits. Ingenuity and 
brute force can occasionally improve on these 
wastes. Separating these into circuit wastes and 
logic organization waste, some guides can be 

drawn. Circuit waste can be classified in electrical 
terms and, in turn, in terms of available compo- 1 	 nents and techniques. Circuit waste can be mini- 
mized by careful test and good design judgment. 
However, logic and organization waste is a some-
what different thing. The designer crosses a kind 
of psychological barrier between th& circuits and 
their logic. The logic carries with it no intrinsic 
waste. The questions of design begin with eco-
nomics and markets; they end with the engineer's 
ingenuity. The pressure to reduce wastes due to 
the logic is compromised by the availability of 
outstanding circuit performance. New computers 
have been begun almost exclusively on the pros- 
pect of circuits of greater performance. As a result, 
the waste due to Iogical organization has not re- 
ceived equal attention. Consider what is in pros-
pect when the circuit performance well runs dry 
and the kind of relativistic friction of the wiring 
can no longer be ignored. What is needed is a plan 
for removing the logical waste. 

Remember 
The subject of computer memories jogs my own 
memory a bit. The usefulness of memory has 
evolved from a secondary role in the earliest com- 
puters to a present primary role. This early role 
was probably undeserved and unwanted. The fact 
is, there wasn't much to work with at first. Memory 
circuits then (and now) were more cantankerous 
and frustrating than any other. Practical engineers 
chose those which offered some degree of quick 
success. Delay lines provided basically serial mem- 
ory - that is, information was put away, and re- 
covered, one digit at a time. Around this delay line 
memory grew a serial arithmetic system together 
with serial control sequences. Logical complexity 
of these machines was confined to the sequences, 
and otherwise time-oriented steps, performed on 
the data flowing to and from memory. Many in 
those days said that with a rather unlimited fast 
memory (say several thousand words) a huge im- 
provement could be had. The obvious advantage 
of parallel memories (all bits of the word at once) 

1 	 broke down any economic obstacles. 
1 	 The feeling that unlimited high speed memory 

would give advantages has persisted even with 
enormous increases in size. The idea of primary 
and secondary memories, a kind of conscious and 
sub-conscious, allowed for magnetic drums and 
tapes. However, it remained for the magnetic fer- 
rite cores to provide a really satisfactory parallel 
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primary memory. The key advantage was parallel 
operation with no penalty for referencing in odd 
order (random access). The ferrite memories have 
become most successful and reliable and provide 
high-speed memory measured in hundreds of 
thousands of words. It is nonetheless interesting 
that the problems to be solved by computers con- 
tinue to far out-strip this explosive growth. 

The matter of primary and secondary memories, 
of course, offers a variety itself. They take the form 
of temporary and fixed stores, index stores, in-out 
buffers, and so on. They range nowadays from 
transistor registers, small temporary stores of film 
and ferrite, modular ferrite memories of large size, 
magnetic drums, magnetic disks, magnetic tapes, 
magnetic cards, optical stores -an endless array. 
The continuing success of ferrite memories has led 
to some intrinsically different methods of use, of 
which the coincident-current and word-organized 
memories are the leaders. 

With the logic circuit performance keeping just 
one jump ahead, the memories continued to repre- 
sent a large part of the time spent in operations. 
An admittedly brute force improvement in large 
memories was the separation into several banks of 
memory, with overlapping of cycles. Truly parallel 
banks of memory evolved to give an added dimen- 
sion to the term parallel computer. Through all 
this, the original concept of primary and secondary 
holds with its one major problem: the somewhat 
untidy shuffling back and forth of data between 
the two. The very necessary data are naturally 
kept in primary memory, and the little used files 
in secondary. It is the in-between ground which 
seems to defy any order. 

Some attempts have been made to make sense of 
this problem. There are schemes of addressing all 
data, primary and secondary, with somewhat auto- 
matic transferring when necessary. Other schemes 
use direct block transferring at very high speed. 
It would seem that more parallel trunks for these 
transfers would help. One trunk could load and 
another empty large chunks of primary memory 
not presently in use. In fact, several sets of these 
might be worthwhile. A fundamental assumption 
is made, however. If the trunks are to be usable, 
they must be separate; and there must be a com- 
parable ability to compute on other primary mem- 
ory at the same time. In fact, in the worst case 
a meshing of all these operations must be possible 

by parallel trunks, time-sharing, random ordering 
under an over-all control. To obtain this final effect, 
much more than the memory must be considered. 
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What is described above could be called another 
step of parallelism, i.e., parallel-by-function, to be 
added to the bit parallel, word parallel, and mem- 
ory bank parallel schemes. It is simply the idea 
of more things being done at the same time. 

Illogical Waste 
The computing is done on the data at a point in 
its trip from memory and back to memory. Most 
computers contain at least one place outside of 
memory for holding intermediate or partial results, 
usually an accumulator. Data to be carried over 
from one operation to the next can be placed in 
this accumulator and recovered from it. In fact, 
it forms a one word high-speed memory attached 
to the arithmetic and must have a path to the main 
memory as well. 

A good many sequences of operations contain sev- 
eral cases of cumulative results. More than one 
carry-over register would be attractive for these 
cases, especially if a net speed improvement were 
possible. On the premise that transistor register 
storage is substantially faster than magnetic mem- 
ory (say ten to one), a number of registers would 
allow good isolation from memory. These registers 
would require refilling from memory for incoming 
data and emptying to memory for final results. 
Otherwise, the partial results would arise from 
the computing activity. Thus, it can be seen that 
memory access is a secondary process as far as 
time is concerned and is mostly masked by com- 
puting time (more on this later). 



Typical computer instructions contain memory 
addresses for the incoming data and the results. 
By removing memory to a secondary role, most of 
the computing instructions can refer to the tran- 
sient registers. A considerable instruction word 
efficiency is thereby accomplished, since a few 
bits will entirely identify a small number of regis- 
ters . . . whereas many bits are needed for the 
full memory addresses. This may appear a useless 
efficiency. However, it is an essential part of a 
new approach along with the concurrence of paral- 
lel memories and parallel functions. I plan to de- 
scribe, from this point on, how this new approach 
removes a good deal of the logic waste mentioned 
earlier. Needless to say, this approach is exempli- 
fied in the Control Data 6600 Computer. 

Sequence 
In any computer program, the results are obtained 
by the execution of sequential operations. Among 
these operations are some whose order of execu-
tion is unimportant to the result. In fact, the 
operations tend also to separate into somewhat 
independent trains, some housekeeping, some com- 
putational, some memory, and so on. These inde- 
pendent trains occur (or can occur) nested, so 
to speak, in the total sequence. A typical computer 
makes no attempt to take advantage of this nesting. 
Each instruction is taken in sequence and per- 
formed in sequence. If the computer had several 
arithmetic units of independent nature, and the 
ability to discriminate between those steps which 
must retain the original program order and those 
which need not, a positive improvement could 
be had. 

It isn't difficult to visualize a number of inde-
pendent arithmetic units. However, it requires a 
very detailed examination of each instruction to 
determine how to discriminate on the sequential 
order. Back to the above plug-for-simplicity, here 
is where it really counts. Simply stated, orderly 
sets of instructions can be checked for sequence 
order quickly and efficiently. The conditions which 
make up the basis for the order of events to 
follow can be logged and up-dated. A quick 
decision can be made on which kind of order 
constraints are active, and a proper next step can 
be taken. The next step can be in the form of a go- 
ahead or a wait until conditions are more suitable. 

This cannot be visualized in the same way as the 
typical sequential machine. In such a machine, 
some underlying control mechanism, e.g., a pulse, 

is formed at the beginning of a computation and 
proceeds through paths in the hardware like a 
mouse in a maze. Sometimes the pulse is dupli. 
cated for parallel controls of the data. However, 
only one of these duplicates provides the sequen- 
tial continuity to the next step. 

In the multiple unit machine, the control system 
begins similarly. A pulse is formed in the begin- 
ning, and sequential steps are taken up to, but 
not including, the first actual arithmetic or logical 
operation. From that point on, this original pulse 
is spread to a most complex network of paths, of 
which no sensible connection with sequence can 
be seen. This network serves to maintain an up-to- 
date reservation list on all units and transient 
memory registers. New operations can begin execu- 
tion only if reservation conditions are favorable. 
Once an operation is issued to its unit, its reserva- 
tion is made and thereafter monitored until the 
execution is complete. During the execution, the 
con3icts of use of trunks, registers, and the order- 
keeping are more or less an automatic part of this 
reservation control. As new instructions are brought 
up and thrown into this caldron, the order of their 
arrival is the only information about the ultimate 
desired order. Inside the caldron, late arrivals may 
actually proceed ahead of their turn as long as no 
impediments exist. (Note: It's like supper out. 
I've always been delayed getting a table for six.) 
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Despite all the confusion in describing such a 
system of multiple units, it makes no sense to have 
them if they cannot operate concurrently. More 
than that, concurrency is our only way out of the 
wire - speed limit. There are drawbacks to a com- 
plex system such as this. However, the drawbacks 
are almost exclusively on the side of design and 
manufacture, not on the use of the computer. The 
only reasonable question to ask is: "Do the difficul- 
ties of design and manufacture result in cost or 
competitive disadvantage?" Let me discuss the 
general subject of design and manufacture. 



At odds 
One thing has characterized the history of com-
puter design more than any other: flexibility in the 
small. Building blocks made up of identical repeat- 
able circuits have been constructed into general- 
ized groupings, in themselves very flexible. To 
keep the number of these groupings small, for logis- 
tics and manufacturing reasons, some waste is 
allowed. By and large, however, the waste is mini- 
mal and pays off in over-all flexibility. Design in- 
volves mostly the complex interconnection of these 
grouped circuits obeying the well-established 
ground rules. Manufacture of the circuits proceeds 
somewhat independent of design, once the basic 
groupings are fixed and estimates are made of the 
number of each. Now then, with standard building 
blocks, the importance of wiring between them is 
obvious. In fact, the wiring allows the flexibility, 
so to speak. We have seen that wire length and 
speed of signals on wires are fast developing into 
a limitation. It isn't hard to see that wiring must 
be minimized, shortened, removed, or otherwise 
offset. Also, it isn't difficult to see that flexibility 
may be lost in the process. In truth, the two are 
really at odds. 

The passing of time 
The first thought in minimizing wire length is to 
reduce it. Make everything smaller. Yet work is 
performed on everything but the wire in this effort. 
The result is great reduction of circuit volume with 
no reduction in wiring volume. The wiring volume 
is now about half the total volume. 

If the circuits could be more carefully or cleverly 
grouped, it might be possible to remove some 
wires. This very laudable thought hits directly at 
the idea of flexible circuit blocks. Of course, a 
multi-level method of assembling modules is pos- 
sible ( the mother-board technique ),but this is also 
basically inflexible. No, it's too bad, but flexibility 
has got to go. What is the result? The principle 
effect is in design with some small effect on manu- 
facturing. The design-and-build process is length- 
ened, since manufacture must wait for complete 
design. What I have touched on in the last few 
paragraphs is the very real present-day problem 
facing the industry. Without exception, the tech- 
niques being formulated for the next round of elec- 
tronic equipment are based on design inflexibility 
except at very small levels. Integrated circuits of- 
fer no improvement unless coupled with more 
complex groupings to minimize or remove wires. 

Depositing techniques demand geometric and 
topographic design of whole groups of circuits. 
Multi-layer printed wiring requires photographic 
design processes. These are all at the engineering 
and designer level, not below. The entire direc- 
tion of the computing industry is toward design 
inflexibility. 

The advantages to be had must, of course, out- 
weigh the loss of quick design and quick change. 
The idea of parallel functional performance ap- 
peared early to be a design problem. But compar- 
ing it to the more basic trend of design, the prob- 
lem of inflexible design technique is already here. 
Machine speed per dollar is still the principal 
competitive issue in selling computers. Any and 
all schemes for improving speed will be tried. The 
fact that they cause dislocations in the designing 
and manufacturing is merely a sign of the passing 
of time. 

ON TIME 
Aside from the weather, time is the subect of more 
casual discussion than most. In respect to the 
weather, time may be considered the opposite, in 
that its passage is highly predictable. In another 
way, time is very much like the weather. Both have 
a kind of fundamental rhythm or motion. We are 
familiar with the inexorable motion of time when 
we want to slow it; we know its tortuous passage 
when we want to speed it; we know the gradual 
acceleration of time as we grow older. In spite of 
our subjective notion of time, we live by it, watch 
it, cook by it, and measure by it. It is a distinctive 
element in almost every modern measurement or 
analysis, whether physical, chemical, statistical, or 
whatever. 

What is it? 
It is difficult to describe time. It is certainly one of 
the dimensions of the physical universe; but it is 
that unusual dimension with only one direction: 
positive. Its measurement has progressed from the 
hourglass, water clock, pendulum and crystal to 
the "atomic clock." Man's attempts to give a stand- 
ard accounting of time have encountered such 
devious problems as the beginning hour of the day, 
the duration of a year, and daylight saving time, 
among hundreds of others. 

The principle objectives in accounting accurately 
for the passage of time are to measure what is done 
in an elapsed period of time and to synchronize one 
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activity with another concurrent activity. The 
range of measurement is considerable. Biological, 
mechanical, atomic, atmospheric, and astronomical 
events operate in grossly different scales of time. 
I t  is of interest to examine the relationship of the 
duration of real events of a scientific nature with 
the corresponding length of time to solve a mathe- 
matical model of the event. Scientific computers 
were conceived for this work; and for the scientist, 
the computation time is of critical importance. For 
him, it constrains the depth and complexity of his 
model . . . along with the strain on his patience. 

This time is real 
This is, of course, the familiar "real time" compu- 
tation. Visualize an atmospheric model of really 
comprehensive detail. (Now I have succeeded in 
discussing the two most discussed subjects in the 
world, time and the weather. ) Could such a model 
be solved as fast as the weather? I know very little 
about meteorological problems, but I would expect 
that the thermodynamic and hydrodynamic com- 
putation on a world-wide scale is enormous. It 
would be a very happy circumstance if the mathe- 
matical model could be reduced to a workable size 
for machine solution, and still be effective. 

Computing to date has been almost exclusively 
slower than real time, with notable exceptions in 
some military cases. These cases demand shortened 
sights and perhaps qualify only marginally as 
scientific. This little drawback hasn't restrained 
the burgeoning computer industry one little bit. 
The fact is that only occasionally, in the past, has 
there been a real demand for such speed. Many 
problems which appeared amenable to solution 
merely required a single result, once and for all 
time. Others were sufficiently beyond hand-solu- 
tion as to welcome the machine's help. These kinds 
of problems point out or corroborate a new direc- 
tion, a decision, a solution; or perhaps they fill a 
gap in the store of knowledge, to become useful 
later. 

Computers made possible the attack on problems 
which were never attempted before (no one lost 
his job to the machine). This unusual circumstance 
is bound up in time relationships. The machine was 
built to operate without error for a certain period 
of time (usually as good as the designer could do). 
The computation, or some major part of it, had to 
be possible in less than that errorless period. In 
order for the first computer to be successful, its 

speed had to be very high or its health very good! 
There was some threshold of speed and reliability 
under which the computer industry conceivably 
might not have been launched. This time relation- 
ship was enough to make computing machines 
practical. 

The question of which problems were practical in- 
volves another time-speed relationship. Not all 
problems were now practical; only those which 

) could be completed in the life of the machine, the 

i
duration of funds, the patience of the user, and so 
on. This really means that brand-new problems are 
available each time a faster computer is made, not 
just the first time. It isn't at all difficult to see that 
the impetus to make machines faster arises from 
these new problems along with the speedier solu- 
tion of already-practical problems. We have been 
discovering a surprising backlog of new problems. 
The continued- in fact, accelerating -demand for 
more speed means that more efficiency is needed 
in the basic machine operations as well as in the 
use of the machine. 

It should be obvious that any treatment of the 
methods employed in a computing machine must 
include a substantial discussion of time. It is the 
single outstanding obstacle met by the designer at 
every turn. In the following pages, I hope to tread 
a forward path in the attempt to overcome the 
time obstacle. Remember that time has a way of 
fighting back! 

We're running out 
Modern computer circuits employ high-speed 
switches for the complex decision networks. These 
switches require a finite time to change from one 
state to the other. This time period is an intricate 
balance of the electrical demands and constraints 
of the immediate surrounding network. Many 
careers are devoted to optimum combinations of 
materials, geometries, packaging, and processing 
of these switches to give the maximum speed with 
respect to a set of operating specifications. Many 
careers are devoted to finding the optimum adjust- 
ment of operating specifications to take advantage 
of the best available switch. Needless to say, the 
degree of perfection in this optimization is among 
the highest known in any field. Designers of the 
newest computers are able to depend on extremely 
fast and reliable components. It is no longer pos- 
sible to foresee a factor of five or ten times speed 
improvement in the components now in use, or 



like them. A factor of five or so was a working re- minimum and maximum rate of operation. Not- 
quirement for beginning a new computer not long withstanding the tolerance problem, the unclocked 
ago. This factor came exclusively from the basic methods offer some advantages. 
circuit. Claims made for many new computers tend 
to skirt this issue and concentrate on other time 
considerations (for example, lumping all of the 
man-and-machine times together). This is cer-
tainly understandable and entirely valid. BUT, the 
issue really can't be skirted, if we wish to move 
the computing machine up to real time or other 
comparable uses. 

Set your watch 
I mentioned earlier the synchronism of concurrent 
operations. This is, in some quarters, the signal for 
an immediate argument. It seems self-evident that 
two mechanisms working in unison must be syn- 
chronized if they are to work together. Actually 
this is entirely true; the argument is over a more 
subtle complication of the mechanism timing. If 
two mechanisms are to operate concurrently on 
two suitable portions of a computation providing 
answers to a third mechanism, the third cannot 
proceed until both answers are there. This is, in 
itself, a definition of synchronism. The two con- 
current mechanisms may be constructed in a way 
which insures their simultaneous completion; or 
they may be constructed with no thought of the 
completion. In either case, it can be demonstrated 
that some time waste occurs. The very early com- 
puters were designed with a "tight" timing system. 
That is, every step of the computation (in fact, 
every simple decision or command) was activated 
by a central clock. The principal reason was that 
these early machines used many simple steps in a 
small amount of simple circuits to make up a major 
operation. As the economy allowed for more com- 
plex circuits, the very tight timing has given way. 

Waste of time in a tight timing system is apparent 
in every step, since the logical decision made must 
be accompanied by a temporary storage. The 
storage allows for the circuit tolerances and re-
synchronizes any concurrent events. However, the 
circuit tolerances (with regard to time) are not 
allowed to accumulate beyond the single time 
period. The circuit tolerances have an upper and 
lower limit. If these tolerances are allowed to ac- 
cumulate over a long series of steps, the earliest 
or latest time for the answer would vary consid- 
erably. Eventually, this spread of time makes for 
time waste, especially with devices which have a 

I 
The synchronism problem is, most assuredly, an 

L engineering problem rather than any other. The 
I 

methods which I have mentioned are entirely valid. 
I That method which produces the most effective 

result should be chosen. Matters of electrons, volt- 
age, heat, and time have considerable bearing on 
that choice. The result must be a clock system of @ 
dependable tolerances and yet highly effective. In .. this case, a choice of synchronism in-the-large 
seems most effective. Computer history can record 
a long period of comparison by clock frequency. 
That day is gone. No longer is the basic clock a 
reliable measure of the performance. The simple 
reason is that there either isn't any clock at all or 
that synchronism has moved to a higher level. It 
is sufficient to say here that the move was fruitful. 

Other internal time considerations are also im- 
portant. The most common one mentioned is the 
memory access time. This is defined as the time 
taken to fetch a word from memory. It is normally 
measured from the instant the address is formu- 
lated until the fetched word is available for com- 
putation. This is usually about half the total stor- 
age time in destructive memories. With one 
memory, a three-address instruction would require 
three storage times plus compute time. With two 

I 
memories having the ability to overlap the second 
access with the first restore, the above case could 
be one and a half storage times (three access 
times) plus compute time. The smaller the ratio of 
access time to storage time, the better this overlap 
system looks. Note, however, that the overlap 
doesn't work for addresses to the same bank of 
memory. 

An extension of the overlapping memories might 
simply add enough memory banks to reduce the 
probability of referencing the same bank. To this 
can be added schemes for overlapping more than 
the access periods and schemes for reducing ad- 
dressing bottlenecks. These are certainly important 
and represent significant speed improvement. 
However, memory time is typically an integral 
sequential element in every instruction, and as such 
cannot be reduced to zero. That is, it can't unless 
memory acquisition is separated from the instruc- 
tion. To accomplish this, a set of high-speed regis- 
ters may be included in the computer to serve as 



buffer between memory and arithmetic. These 
registers must refill concurrently with computing 
and must empty to memory also concurrently with 
computing. 

A concurrent structure such as described above 
places the memory in a secondary role of refill and 
empty. Time for this secondary role is a vague 
complication of memory bank overlaps, conflicts, 
priorities, and so on. It defies generalizing in the 
time domain. It, nonetheless, makes for a faster 
computer and points the way to even more speed. 
It is most important to note here that this speed 
increase is entirely aside from circuit or com-
ponent speeds. 

By now, the reader will be aware (and tired of 
hearing it) that concurrency is the magic way 
around the time obstacle. The technique need not 
be limited to concurrent memories. Arithmetic 
units may be arranged to take advantage of this 
technique. In fact, it is within reason to consider 
independent and concurrent processors as an ex- 
ample of the principle. For principle it is, just as 
serial and bit-parallel computing represent the 
evolving principles in the past. 

Up and down 
I can't leave the subject of time without including 
up and down time. Machines are subject to an im- 
perfection never quite so small as to be neglected. 
To be sure, methods are available to make this 
bearable. 

Time plays a part in these methods. Aging of com- 
ponents is no longer a primary factor in machine 
failures. Preventive maintenance allows the ma-
chine to be exercised under stress and under criti- 
cal examination. For such examination to be 
critical the engineer must have enough time to 
thoroughly test each element. Here is where the 
very fast computer really shines. Many more trials 
may be made in a period of real time than with 
slower computers. Failure may be stated as a 
statistical function of the number of trials. One 
failure of a device labels it as faulty but may not 
be enough to discreetly identify the culprit. Sev- 
eral errors under the critical eye of the mainte- 
nance engineer may suffice to identify it. There- 
fore, the higher rate of trials in real time distinctly 
improves the maintenance. Axiom -faster com-
puters are more reliable. 

LOGIC AND NUMBERS 
I 

To a logician, most deductive reasoning can be 
: 	 formulated with symbols and rules very similar to 

mathematics. In fact, arithmetic could be described 
as the set of laws governing the logic of numbers. 
Numerical computation is the logical manipula- 
tion of that class of symbols called numbers. Com- 
puting machines, of course, are constructed to obey 
the rules of arithmetic. A common understanding 

&P 	 about these machines is that their basic elements 
are arithmetic in nature. Such is not the case. The 
basic elements are only logical and must be espe- 
cially interconnected for arithmetic. 

I 
I The machines contain wired-in deductions con- 

cerning the beginning arguments. The '<wiring-in" 
is accomplished according to a generalization 
(about the numerical rules or other logical rules). 
The deductions are certainties arising from this 
generalization. By appropriate experiments, the 
deductions may be tested, with the resulting con- 
firmation or rejection of the generalization. Since 
the rules governing the wired-in logic of the 

1 

I 

machine have been fundamentally arithmetic, the 
confirming experiments are well known. In fact, 
the generalizations made in the first place are well 
known and proven. 

To be 	certain 
The procedures for using the machine are also 
based on a deductive method. The factual certain- 
ties arising from these procedures are also subject 
to confirming experiment. The machines, one 
could say, must first be tested and proven; then 
the use must be tested and proven. Since the prin- 
cipal use of computing machines has been arith- 
metic, the problem analysis and the method of 
solution lend themselves to reasonable test. 

Oi course, the machine can be turned around and 
used to perform the tests itself. Assuming the 
wired-in logic is entirely confirmed, the machine 
may test the proposed use by solving an experi- 
mental problem and comparing with a known 
answer. The solution is found by an organized pro- 
gram of basic machine steps. We stipulate here 
that the basic steps are proven. Therefore, the ex- 
periment should show that the program represents 
an accurate and correct generalization of the solu- 
tion. If the test fails, some aspect of the generali- 
zation (or its specific embodiment in the program) 
is rejected. 



There are two points of view about this facet of 
computing machines. The less there is wired into 
the machine in the way of logic, the more freedom 
there is for the programmer. On the other hand, 
with little wired-in logic, the chance for error (of 
a logical kind) is greater. I suppose this will be 
subject for argument forever. The current prac- 
tical solutions contain a minimum of wired-in 
logic. The principal reasons for this cover areas 
such as: inability to provide a universally accept- 
able higher level of logic, substantially longer de- 
velopment periods for confirming the logic, and 
simple economics of the extra hardware. None of 
these need be a permanent deterrent to more in- 
ternal logic. 

What has happened in recent years is an attempt 
to establish this higher level of logic or reasoning 
by means of program organization. Deductive 
reasoning demands unambiguous symbols and 
words as well as the grammatical rules of language. 
Actually, some of the reasons why higher levels 
are not built in the machines apply to the pro- 
gramming as well. There is a chaos in the present- 
day universal languages. The development periods 
for the programs are fully as long as for the basic 
machine. Huge expenditures of time and money 
have been made for the effort. Perhaps a look at 
the logic already built into a modern computer 
would help. 

You pick yours . . . 
The fact that computer circuits are more logical 
than arithmetic is of considerable interest to the 
student of artificial intelligence. To the engineer, 
however, the circuits reduce to a very basic switch- 
ing logic. In this form, open and short circuits 
represent the arguments and deductions. Electrical 
current is made to flow (or not) in resistance by 
the action of transistor switches. The resulting 
voltage causes other switches to close (or not). 
Combinations of switches cause various results. 
These combinations remain fairly simple since the 
electrical constraints, along with speed losses, 
limit the kind and number of interconnections. 
Being simple, the combinations lend themselves to 
proof by truth tables. This is a form of symbolic 
logic itself in which initial conditions are the co- 
ordinates of a table and the results fill out the 
table. 

Simple combinations can be wired and connected 
end to end in sufficient chains to form a complex 

logical combination. The number of combinations 
possible increases rapidly with each added link in 
the chain. In order to perform simple arithmetic 
on whole numbers, those logical combinations are 
selected which obey the rules of arithmetic. It is 
entirely possible to construct logic for any known 
number system. However, the binary-octal system 
is formed by the simplest logical combinations of 
switches, and this is the most commonly used sys- 
tem inside the computer. Converting between 
number systems is a logical operation which can 
be built into the machine. This particular question 
is determined by the designer with most regard to 
the average time wasted in a computation con- 
verting and re-converting between the internal 
number system and the external. In some cases, the 
total time thus spent has been demonstrated to be 
so high as to warrant use of the external system 
(usually decimal) internally as well. This is a fair- 
ly good example of the selection of wired-in versus 
programmed logic. 

. . . I'll pick mine 
I t  is, of course, necessary to deal with numbers 
other than whole numbers, for example, fractions. 
It is necessary to mix, group, and compare numbers 
in more and more complex ways. Especially in 
solutions of scientific problems, the range of mag- 
nitudes is enormous and not very predictable. For 
these problems a logarithmic arithmetic is best 
suited. In modern scientific computers this is called 
floating point arithmetic. 

There are a number of varieties of floating point 
methods, being different by  the superficial detail, 
rather than fundamentals. Although this kind of 
arithmetic is a good deal different from simple 
integer or fractional arithmetic, these can be usu- 
ally computed in the floating units. 

The typical scientific problem is solved by repeti- 
tive steps involving intermediate and partial an- 
swers. As the problem solution progresses, the 
error in defining the original numbers is increased 
by the errors involved in each arithmetic step. This 
doesn't mean that the deductive logic of the 
machine's circuits have somehow produced uncer- 
tain answers. At the level of the circuit logic, the 
answers are still certainties. However, in inter- 
connecting by wires and by program steps the 
floating point operations, an interesting limit oc- 
curs. It is possible to manipulate numbers within 
the machine of a certain maximum size, or numbel 



of digits, that size being limited by the size of 	 OF PARTS AND MECHANISMS 
register built into the machine. Numbers can there- In this industry, progress has kept moving with 
fore be introduced with a limit on the number of little advance warning of new directions. The lure 1significant digits and thus with an error of some- of profit stimulates innovation, and the spur of 
thing less than the least significant digit. This error 
is real and can contribute measurably to the accu- 
racy or significance of the answer. For example, it 
is entirely possible for a long series of arithmetic 
steps to accumulate an error so large as to com- 
pletely obscure and invalidate the answer. 

There are methods available for minimizing this 
sort of floating point loss of significance and accu- 
racy. They range from well accepted methods to 
quite radical techniques. It must be the designer's 
duty to provide for as many of these techniques 
as possible without loss of convenience or speed. 
This is a good example of a very difficult selection 
of wired-in versus programmed logic. The logical 
methods available to the designer are fixed by the 
nature of the circuits he uses. These are usually 
of a very simple kind, and he is required to work 
at the most basic level. It is a tedious hand job, 
especially as the complexity of the circuit modules 
increases. There are no barriers more positive to 
the computer engineer than his use of the last 
connector pin or transistor location. Fitting the 
hundreds of thousands of elements together in a 
sensible array demands a sensible plan. 

I t  can be stated with assurance that the optimum 
amount of built-in logic will be subject of heated 
argument. In order to be completely flexible, some 
convenience and speed must be sacrificed. In order 
to aim at a higher efficiency in some area, other 
areas may suffer or be completely ruled out; hence, 
limiting the general-purpose aspect of the machine. 
As a matter of fact, though, these thoughts apply 
to the program standards as well. In order for 
machine languages to be thorough and efficient, 
some loss in flexibility will be apparent. 

The modern computers have provided a few 
higher level built-in operations along with the 
basic ones, most notable being the floating point. 
The risks in going further are very great. One of the 
few criteria which makes sense is the computing 
speed per dollar of cost. The larger the computer, 
the more freedom there is to include extras. How- 
ever, it is important to realize that the very large 
economy-size computer is not feasible unless the 
user gets large economy. 

competition forces the early arrivals to defend their 
positions by improved performance. This is a proc- 
ess, described as "creative destruction," where not 
all are winners. Progress in computing is directly 
related to time and performance, with economic 
factors closely following. It is the step up in per-
formance that the engineer seeks by new devices 
and new logic. The first endorsements don't come 
from the economist, but the lasting techniques do 
need the stimulant of wide acceptance with result- 
ing savings. The techniques open to the engineer, 
therefore, tend toward a rather narrow range of 
devices. 

Fa~rchildSemiconductor Div. 

It is especially interesting to me that the most! 
modern universally-accepted device for computer 
circuits, the transistor, is a triumph of geometry. 
Most of the recent improvements in the transistor 
come from ingenious methods for providing a thin 
layer here, a thick layer there, a large surface here, 
a minimum surface there. The beauty of geometric 
design has long thrilled men. The transistor mixes 
crystalline symmetry with etched surfaces visible 
only by microscope. More than this, the electrical 
reactions of the transistor can be sharpened to 
really surprising speed. For the engineer familiar 
with "lumped constant" effects, the modern com- 
ponents are a revelation. (Note : Lumped constant 

-	 effects refer to idealized electrical engineering 
methods.) Although transistor speeds are still in 
the order of several hundred times slower than 
the speed of light through the space taken up by 
he device, the speed is still a surprise. Transistors 
nake excellent switches when limited to low volt- 



ages. The speed with which such switches can be 
opened or closed has increased by several hundred 
since they were first introduced. Wide acceptance 
has added the economic stimulant to the very de- 
sirable properties of the transistor. 

Machines built with transistors today utilize the 
most simple known circuits. Several variations are 
available with relatively equal simplicity. The de- 
signer's choice is formed from an amalgam of 
component capability, size and shape, and the 
geometry of the packaging. Speed being the prime 
objective, heat, power, construction methods, and 
so on are the variables for his use. 

Good losses 
A recent packaging technique with very good 
efficiency of volume usage is the "cordwood pack- 
age used in the Control Data 6600. This package 
gives four surfaces for etching the interconnec- 
tions. This structure is a step up in module com- 
plexity from the small single-board cards of recent 
years. The density of circuits per unit volume is 
up by three or four over the cards. A number of 
gains and losses arise from this kind of packaging. 
The loss of most importance is in standardization 
of modules. The package contains so much logic 
that a flexible minimum set of module types would 
sacrifice considerable potential efficiency. Another 
problem is the extra logical complexity of the mod- 
ule. It is of little use to apply mechanized tech- 
niques to help with the design of these modules. 
The job of designing with them becomes once 
more, as in the past, a hand job. Engineering of 
computers utilizes geometric and topographic 
methods more than ever. 

These are "good losses, though, since the gains 
far outweigh them. The improvement in volume 
density is significant, and well worth the effort 
in improved speed. The increase in complexity 
within the module allows for two conditions of 
circuits, those inside and the interconnections be- 
tween modules. The effect is to group logic more 
efficiently in modules so that advantage may be 
taken of the internal speed and loading rules. 
Internally, wire lengths of less than three inches 
are encountered, whereas the average external 
lengths are perhaps ten times that. This reflects in 
longer transmission times. The external lines may 
provide only enough current and voltage to sup- 
ply (without further transmission time ) a fraction 
of that available internally. These and, of course, 
the problem of module connector pins and back 

C 
panel wiring volume all add up to a plus for the 
more complex "cordwood package. The loss of 
flexibility is unfortunate but by no means defeating. 

Other more specialized modules are also possible 
with such techniques, notably the memory pack- 
age. With suitable connectors and internal frame- 
work, a memory may be constructed with compleke 
addressing and storing circuits in one package, 
This more or less reverses the losses just mentioned, 
since a memory package may be considered a 
standard unit to be "plugged in" wherever re-
quired. In the Control Data 6600 Computer, such 
memory modules are made up in 4096 word (12-
bit) size for use in the peripheral processors. Also, 
five modules make up one 60-bit memory bank 
in the central memory. 

Form, not dimensions 
Packaging techniques which greatly increase the 
density of circuits are also likely to increase the 
heat density. The choice of circuit open to the 
designer may allow a low power dissipation, but 

1 

generally no large factors are possible, especially 
for increased speeds. Cooling, or maintaining con- 
stant temperature, is very important. Moving air 
past the dissipating element has been fairly suc- 
cessful in the past. However, one aspect of higher I 
density is the restriction of air flow. Cooling by 
cold bar conduction, radiating fins and plates, cir- 
culating coolant, and the like are among the way 
out of the dilemma. The 6600 Computer is freon- 
cooled. 



In very large systems, the sheer volume of logical 
and memory hardware demands several cabinets 
or bays of chassis. The length of interconnections 
between the different portions of this array may be 
a serious speed problem itself. No design is so 
cooperative as to allow neat groupings adjacent 
to each other without the long wire. The most 
effective geometric forms are the cylinder with 
interconnections at the axis or the cube with in- 
terconnections on the surfaces. The sphere, of 
course, might appear superior to either. However, 
the fabrication complexity is a significant draw- 
back. My personal preference is the cylinder. The 
axis can be the location of interconnections as well 
as the pivot for moving aside the adjacent parts 
of maintenance. The principal advantage is in 
uniform interconnection lengths with quite prac- 
tical fabrication methods. 

How to succeed . . . 
I suppose the picture of computing is of a topsy- 
turvy growth obeying laws of a commercial "nat- 
ural" selection. This could be entirely accurate 
considering how fast it has grown. Things started 
out in a scholarly vein, but the rush of commerce 
hasn't allowed much time to think where we're 
going. In fact, the essential organization of com-
puters hasn't changed at all. The real differences 
are in the fringe "special effect" operations and 
the internal methods, which are hidden except for 
their effect on performance. Even the peripheral 
systems are quite similar to each other. 

. . . without being trying 
In my mind, the greatest potential for improvement 
is with the internal methods (if this isn't already 
clear), at the risk of loss of fringe operations. The 
work to be done is really engineering work, pure 
and simple. As a matter of fact, that's what the 
results should also be -pure and simple. It's time 
to set about developing new wiring schemes and 
new packaging schemes that really fit together. 
The best of what has been done should be the 
guide. Most of the time, the best isn't very spec- 
tacular or clever; it's just the best. Physical volumes 
won't reduce as quickly as we'd like; but they will 
reduce some. Building blocks won't be very flex- 
ible; but they can be made neat and tidy. Trans- 
missions of signals won't exceed the speed of light; 
but sometimes delays are useful. The direction is 
clear and we'd best get about it, before our ele- 
phant stops growing. 
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