
CONTROL DATA 6600

CONSIDERATIONS I N

COMPUTER DESIGN -

LEADING UP TO THE

CONTROL DATAB6600

by JAMES E. THORNTON

CONTROL DATA CHIPPEWA LABORATORY

- - --

NO APOLOGY INTENDED
Someone has said that the elephant can grow no
larger because of the ratio of its volume to the
surface area of its digestive system. On the theory
that simplest reasons are best, this certainly ranks
high on the list. I don't suppose that this explana-
tion of an elephant's size is entirely accurate. How-
ever, it illustrates the idea of an ultimate limit.

Perhaps the steps can be traced in the evolution
of the elephant which most affected its final limi- -

tation. I can imagine some steps aiding and some
reducing the eventual size. Since the evolutionary
model states that natural selection controls each
step, the short-term corrections predominate. I
have no idea what caused the elephant's tusks,
for example. The first rudimentary tusks must have
satisfied some early need. They evidently helped
and were useful; therefore, they were selected.
The tusks have no obvious connection with the
elephant's maximum size, at least by the above
theory. However, they may have been evolved in
favor of another set of molars which could improve
digestion. Or perhaps the roots of the tusks further
limit the intake of food and internally displace the
digestive tract, with a net reduction of the eventual
size. This little fantasy follows the lines of the
natural selection model, by which we attempt to
explain what is going on. It may be that this model,
invented by man, is most accurate when applied
to man's machines, in which a similar situation is
developing. I'm not really interested in larger
elephants, but rather in faster computers.

The quick fix
The factors influencing the evolution of the com-
puter are economic (what isn't), logistic, comfort,
convenience, and any number of other conflicting
preferences. Designers have moved through a
series of "safe" improvements without seriously
tampering with the original idea. The significance
of each innovation is largely masked by the mystery
and confusion surrounding complex machinery.
Actually, a great deal can be accomplished by tak-
ing each obstacle and applying a short term cor-
rection to circumvent it. Really startling improve-
ments in speed have come from the most innocent
and deceptively simple corrections, Ingenuity of
computer designers has made the "quick fix" the
rule of the industry. The ability to do so much
with the simple computer circuits leaves little ex-
cuse for attempting almost any new combination.
The net effect is computers with superficially sirni-

Copyright by Control Data Corporatloa, 196:

lar outward appearance (speed specification, spe-
cial features, standard features) but fundamentally
different internal methods.

There can be no argument with the desire for
faster operation or more effective operation. Our
principle of natural selection serves to weed out
the weak ideas. A strong feature is easily accepted,
copied, and re-copied without much change. Prob-
ably a good rule of thumb for measuring success
is the number of suggested changes -the fewer
the better. On the other hand, following this rule
obviously leads to including every desirable fea-
ture ever mentioned. Lacking economic or elec-
tronic reasons for rejecting a new addition, there
may be another kind of reason. It has to do with
the ultimate limits (something like the elephant)
and leads to a wholly different approach to com-
puter design.

From the beginning, there was something clean
and straightforward about the digital computer
idea. One could visualize enormous potentialities
of such machines. The extension of our brainpower
was a clear possibility; indeed, very shortly a
clear reality. It was easy to think of machines
doing every routine computational job, large or
small. The very principle of using numbers, with
their almost unlimited resources, as the funda-
mental internal controls further opened the pos-
sibilities. However, it was psychologically a little
too much to take at once. The temptation to plunge
off without careful deliberation was countered
with the reaction to do nothing really different.
It was a choice of being a fool or a coward. Under
the circumstances, the "safe" improvements looked
rather good. We were encouraged to go on.

Elementary, my dear
The numerical instructions - the programs -were
originally intended to provide desirable deviations
in the computation quickly and easily. The com-
puter designer could then concentrate on making
the most of the fundamental computer parts with-
out fear of these deviations. The original thought
was to . . . ''make the machine elementary. The
program will provide for the complex needs." The
history of the computing machine has recorded
some failure in this direction. The first special re-
lief granted to a group who suffered from this
elementary phase began a series of evolutionary
phases. ,

It is basic to the computer ide lesn
planner conceive the solution Se-

quence of elementary operations. He orders these
elementary operations in the amount, sequence,
and combination necessary to the solution. A major
portion of the utility of the computer is the use
of repeatable sets of these instructions, the repeti-
tions or iterations of these sets themselves com-
putable. The successful programmer seeks these
iterative loops for a maximum amount of the solu-
tion, knowing this to be faster, less wasteful, or
otherwise more effective. Now, it is precisely in
this area of maximum utility of the computer that
the superficial likenesses between machines belie
the internal differences to the detriment of the re-
sults. A particular repetition on one machine fits
its internal methods more exactly (and therefore
more effectively) than the same repetition on an-
other machine. The second would prefer a varia-
tion in the sequence or combination of the elemen-
tary operations making up the iteration. Plainly,
the program should correct for this problem, leav-
ing the designer freedom to devise the most
effective machine possible. Again, the industry
history has recorded some failure in this approach.

The most important area of failure in choosing
between what is to be elementary (or wired) and
what is to be programmed lies in machine com-
patibility. If there were only one machine and
one set of elementary operations, and if the de-
signer merely reproduced the machine, making
it faster each time, there would be very little
compatibility problem. The original program devi-
ations and the original optimum iterations would
hold. This overlooks, of course, the whole dimen-
sion of improvement available at the elementary
level. Even if one wanted this simplicity, the
psychological atmosphere is against it. Programs
must be made compatible by whatever means
available. Here the idea of developing common
language was most successful. The program was
split into two levels, the original with sequences
and combinations, and a second one with common
language compatibility. Methods devised to trans-
pose between the two levels could be adjusted to
optimize for the specific internal needs of each
machine. This was the original idea in an evolved
form. This should have released the elementary
operations for a more effective result. However, a
movement to upgrade the machine to fit the new
languages bids fair to neutralize this method.

This sort of discussion of elementary versus "special
effect" operations runs the risk of being lost in

specific argument. Almost any kind of operation I
can attract support for a time. Only history can
select the good from the bad in the absence of
specific economic, logistic, or other argument for Ior against. Therefore, it is not with any specific
operation that argument can be successful. What
remains to be done now is to clear away some of
the growth and debris, leaving only those opera-
tions which are truly fundamental or for which
considerable potential can be demonstrated. The
dependence on several levels of language should
aid in this effort rather than trigger a series of
new corrections to fit. In short, the original idea ,
was so good and so simple that we ought to start ,
again with our experience as a guide. The time is
fast approaching when a really serious upper limit
will be reached, a direct result of the speed of
light limit of electrical signals on wires.

What can be gained by simplicity? I know, of
course, there remains the lingering doubt that
simplicity is the answer. The computer must be
effective, not merely fast. Without attempting to
remove that doubt, let me discuss some effects
of simplicity. The elementary level (wired-in oper- ,
ation) that I will consider fundamental includes I

floating point arithmetic as well as the logical and ?

fixed point manipulative operations. Something
over one hundred distinct operations can be edited ,
down to about half that number for the machine's I
elementary set of operations. From this set, it must
be possible to construct the most complicated op-
eration. It is obvious that some, if not the majority,
of such complicated operations can be made faster
by wiring them in. I propose to show how they
cause other delays which may result in a net loss.

A significant portion of the time of most elementary
operations is absorbed in obtaining and identify-
ing what to do. For two reasons, the simple in-
struction set is desirable. The fewer instructions
require a smaller instruction word, allowing more
to be obtained at once from memory (a normally
slow operation). The simplicity of all instructions
allows quick and simple evaluation of status to
begin execution. Both reasons add up to faster
instruction acquisition. Notice that this applies to
all instructions. Adding complication to a special
operation, therefore, degrades a11 the others. Par- I

I
ticularly in the newest computers with a high I

degree of parallel operation, this instruction fetch

and interpret time becomes a very significant

percentage.

Concurrently sequential
Looking further into parallel operation, it is rea-

sonable that more and more of the sequential

operations will give way to parallel. As a conse-

quence, more and more circuits are included in

.the computer. Full utilization of the extra hard-
+

ware demands that instructions be issued quickly
and efficiently to the free areas for execution. In
order to get several areas in operation concurrent-
ly, the time for issuing must be substantially faster
than the time for executing. This is precisely the
area of fetch and interpret time.

ADD

MULTIPLY

DIVIDE

INSTRUCTIONS

LOGICAL

MEMORY

For the repetitive iterations, mentioned earlier,
which make up a large part of the computer's
utility, this high speed issuing of instructions can
be augmented by a high speed supply of instruc-
tions. Since the very simple instructions can also
be made efficient of instruction bits, more can
be held at once. Holding complete iterations with-
out need to reference memory offers a significant
speed advantage, distinctly improved by simplicity
in the instruction set.

It is part of the theory of use of special wired
instructions that many normally sequential oper-
ations need not operate in sequence. The special
instructions remove all but the essential sequential
operations from the time sequence. The extras are
performed in separate hardware not influencing
the total time. This valuable technique can be ap-
plied to whole sets of instructions if separate
arithmetic and functional units are included in the
computer. Assume about ten functional units, such
as those in the central processor of the Control
Data@6600. Next, assume that these units contain
completely independent controls. Further, assume
an over-all control system which can issue instruc-
tions to these units, maintaining the necessary

r

sequence but allowing the "extra" operations to
go forward without influencing the total time. It -
15 feasible with such a system to construct a more
complex special instruction by programming its
parts without sacrificing the special ability of the
wired-in special instructions. To the degree that this
technique is available in allprogram sequences, not
just the special combinations, the entire program is
speeded up. Let me continue to point out that the
special instructions are first given up in order to
obtain this very desirable effect. The extra hard-
ware is merely distributed in a more general way.

I mentioned the difference in internal methods
from computer to computer. These methods, of
course, are of little interest to the user except as
they influence the final effectiveness of each pro-
gram. In view of impending limits to speed, it may
be fruitful to discuss some of the detailed methods.
First, a look at the speed of light limit is in order.
Among the several ways to interconnect the com-
puter logic circuits, none exceeds about three-
quarters of the speed of light. This translates to
about 9 inches per nanosecond. A typical present-
day computer wastes over ten per cent of its time
traversing these interconnecting wires. Assuming
factors of circuit improvement, in the future, of
two to four times the present rates, one can see
the dominating influence of these wires. This is
a kind of reverse situation from our friend ele-
phant. In order to reduce the wbe length, the total
volume must come down at a much higher rate.
Some reduction is possible, but the volume-to-area-
to-linear dimensions are almost self-defeating. It
should be very clear that no really startling speed
improvements can be made on these wire trans-
missions. Furthermore, each such improvement
shortens the time when wire speed is a really
difficult limit.

Psychological barriers
Computer circuits employ an intricate variety of
methods. Such mechanisms as synchronism, se-
quences of steps, static combinations, storage, etc.,
depend, at least partly, on the accuracy of the
clock. To the waste of time on wires mentioned
above can be added the tolerance of the clock,
the ratio of longest untimed paths to the shortest,
and a host of unnecessary periods of circuits wait-
ing for completion in other circuits. Ingenuity and
brute force can occasionally improve on these
wastes. Separating these into circuit wastes and
logic organization waste, some guides can be

drawn. Circuit waste can be classified in electrical
terms and, in turn, in terms of available compo- 1 	 nents and techniques. Circuit waste can be mini-
mized by careful test and good design judgment.
However, logic and organization waste is a some-
what different thing. The designer crosses a kind
of psychological barrier between th& circuits and
their logic. The logic carries with it no intrinsic
waste. The questions of design begin with eco-
nomics and markets; they end with the engineer's
ingenuity. The pressure to reduce wastes due to
the logic is compromised by the availability of
outstanding circuit performance. New computers
have been begun almost exclusively on the pros-
pect of circuits of greater performance. As a result,
the waste due to Iogical organization has not re-
ceived equal attention. Consider what is in pros-
pect when the circuit performance well runs dry
and the kind of relativistic friction of the wiring
can no longer be ignored. What is needed is a plan
for removing the logical waste.

Remember
The subject of computer memories jogs my own
memory a bit. The usefulness of memory has
evolved from a secondary role in the earliest com-
puters to a present primary role. This early role
was probably undeserved and unwanted. The fact
is, there wasn't much to work with at first. Memory
circuits then (and now) were more cantankerous
and frustrating than any other. Practical engineers
chose those which offered some degree of quick
success. Delay lines provided basically serial mem-
ory - that is, information was put away, and re-
covered, one digit at a time. Around this delay line
memory grew a serial arithmetic system together
with serial control sequences. Logical complexity
of these machines was confined to the sequences,
and otherwise time-oriented steps, performed on
the data flowing to and from memory. Many in
those days said that with a rather unlimited fast
memory (say several thousand words) a huge im-
provement could be had. The obvious advantage
of parallel memories (all bits of the word at once)

1 	 broke down any economic obstacles.
1 	 The feeling that unlimited high speed memory

would give advantages has persisted even with
enormous increases in size. The idea of primary
and secondary memories, a kind of conscious and
sub-conscious, allowed for magnetic drums and
tapes. However, it remained for the magnetic fer-
rite cores to provide a really satisfactory parallel

- -

primary memory. The key advantage was parallel
operation with no penalty for referencing in odd
order (random access). The ferrite memories have
become most successful and reliable and provide
high-speed memory measured in hundreds of
thousands of words. It is nonetheless interesting
that the problems to be solved by computers con-
tinue to far out-strip this explosive growth.

The matter of primary and secondary memories,
of course, offers a variety itself. They take the form
of temporary and fixed stores, index stores, in-out
buffers, and so on. They range nowadays from
transistor registers, small temporary stores of film
and ferrite, modular ferrite memories of large size,
magnetic drums, magnetic disks, magnetic tapes,
magnetic cards, optical stores -an endless array.
The continuing success of ferrite memories has led
to some intrinsically different methods of use, of
which the coincident-current and word-organized
memories are the leaders.

With the logic circuit performance keeping just
one jump ahead, the memories continued to repre-
sent a large part of the time spent in operations.
An admittedly brute force improvement in large
memories was the separation into several banks of
memory, with overlapping of cycles. Truly parallel
banks of memory evolved to give an added dimen-
sion to the term parallel computer. Through all
this, the original concept of primary and secondary
holds with its one major problem: the somewhat
untidy shuffling back and forth of data between
the two. The very necessary data are naturally
kept in primary memory, and the little used files
in secondary. It is the in-between ground which
seems to defy any order.

Some attempts have been made to make sense of
this problem. There are schemes of addressing all
data, primary and secondary, with somewhat auto-
matic transferring when necessary. Other schemes
use direct block transferring at very high speed.
It would seem that more parallel trunks for these
transfers would help. One trunk could load and
another empty large chunks of primary memory
not presently in use. In fact, several sets of these
might be worthwhile. A fundamental assumption
is made, however. If the trunks are to be usable,
they must be separate; and there must be a com-
parable ability to compute on other primary mem-
ory at the same time. In fact, in the worst case
a meshing of all these operations must be possible

by parallel trunks, time-sharing, random ordering
under an over-all control. To obtain this final effect,
much more than the memory must be considered.

MEMORY BANKS

-C.
STORE READ

t
.
1.

--

What is described above could be called another
step of parallelism, i.e., parallel-by-function, to be
added to the bit parallel, word parallel, and mem-
ory bank parallel schemes. It is simply the idea
of more things being done at the same time.

Illogical Waste
The computing is done on the data at a point in
its trip from memory and back to memory. Most
computers contain at least one place outside of
memory for holding intermediate or partial results,
usually an accumulator. Data to be carried over
from one operation to the next can be placed in
this accumulator and recovered from it. In fact,
it forms a one word high-speed memory attached
to the arithmetic and must have a path to the main
memory as well.

A good many sequences of operations contain sev-
eral cases of cumulative results. More than one
carry-over register would be attractive for these
cases, especially if a net speed improvement were
possible. On the premise that transistor register
storage is substantially faster than magnetic mem-
ory (say ten to one), a number of registers would
allow good isolation from memory. These registers
would require refilling from memory for incoming
data and emptying to memory for final results.
Otherwise, the partial results would arise from
the computing activity. Thus, it can be seen that
memory access is a secondary process as far as
time is concerned and is mostly masked by com-
puting time (more on this later).

Typical computer instructions contain memory
addresses for the incoming data and the results.
By removing memory to a secondary role, most of
the computing instructions can refer to the tran-
sient registers. A considerable instruction word
efficiency is thereby accomplished, since a few
bits will entirely identify a small number of regis-
ters . . . whereas many bits are needed for the
full memory addresses. This may appear a useless
efficiency. However, it is an essential part of a
new approach along with the concurrence of paral-
lel memories and parallel functions. I plan to de-
scribe, from this point on, how this new approach
removes a good deal of the logic waste mentioned
earlier. Needless to say, this approach is exempli-
fied in the Control Data 6600 Computer.

Sequence
In any computer program, the results are obtained
by the execution of sequential operations. Among
these operations are some whose order of execu-
tion is unimportant to the result. In fact, the
operations tend also to separate into somewhat
independent trains, some housekeeping, some com-
putational, some memory, and so on. These inde-
pendent trains occur (or can occur) nested, so
to speak, in the total sequence. A typical computer
makes no attempt to take advantage of this nesting.
Each instruction is taken in sequence and per-
formed in sequence. If the computer had several
arithmetic units of independent nature, and the
ability to discriminate between those steps which
must retain the original program order and those
which need not, a positive improvement could
be had.

It isn't difficult to visualize a number of inde-
pendent arithmetic units. However, it requires a
very detailed examination of each instruction to
determine how to discriminate on the sequential
order. Back to the above plug-for-simplicity, here
is where it really counts. Simply stated, orderly
sets of instructions can be checked for sequence
order quickly and efficiently. The conditions which
make up the basis for the order of events to
follow can be logged and up-dated. A quick
decision can be made on which kind of order
constraints are active, and a proper next step can
be taken. The next step can be in the form of a go-
ahead or a wait until conditions are more suitable.

This cannot be visualized in the same way as the
typical sequential machine. In such a machine,
some underlying control mechanism, e.g., a pulse,

is formed at the beginning of a computation and
proceeds through paths in the hardware like a
mouse in a maze. Sometimes the pulse is dupli.
cated for parallel controls of the data. However,
only one of these duplicates provides the sequen-
tial continuity to the next step.

In the multiple unit machine, the control system
begins similarly. A pulse is formed in the begin-
ning, and sequential steps are taken up to, but
not including, the first actual arithmetic or logical
operation. From that point on, this original pulse
is spread to a most complex network of paths, of
which no sensible connection with sequence can
be seen. This network serves to maintain an up-to-
date reservation list on all units and transient
memory registers. New operations can begin execu-
tion only if reservation conditions are favorable.
Once an operation is issued to its unit, its reserva-
tion is made and thereafter monitored until the
execution is complete. During the execution, the
con3icts of use of trunks, registers, and the order-
keeping are more or less an automatic part of this
reservation control. As new instructions are brought
up and thrown into this caldron, the order of their
arrival is the only information about the ultimate
desired order. Inside the caldron, late arrivals may
actually proceed ahead of their turn as long as no
impediments exist. (Note: It's like supper out.
I've always been delayed getting a table for six.)

-ADD

READ

-MULTIPLY +
NORMALIZE

INCREMENT -
STORE -
-ADD

INCREMENT

Despite all the confusion in describing such a
system of multiple units, it makes no sense to have
them if they cannot operate concurrently. More
than that, concurrency is our only way out of the
wire - speed limit. There are drawbacks to a com-
plex system such as this. However, the drawbacks
are almost exclusively on the side of design and
manufacture, not on the use of the computer. The
only reasonable question to ask is: "Do the difficul-
ties of design and manufacture result in cost or
competitive disadvantage?" Let me discuss the
general subject of design and manufacture.

At odds
One thing has characterized the history of com-
puter design more than any other: flexibility in the
small. Building blocks made up of identical repeat-
able circuits have been constructed into general-
ized groupings, in themselves very flexible. To
keep the number of these groupings small, for logis-
tics and manufacturing reasons, some waste is
allowed. By and large, however, the waste is mini-
mal and pays off in over-all flexibility. Design in-
volves mostly the complex interconnection of these
grouped circuits obeying the well-established
ground rules. Manufacture of the circuits proceeds
somewhat independent of design, once the basic
groupings are fixed and estimates are made of the
number of each. Now then, with standard building
blocks, the importance of wiring between them is
obvious. In fact, the wiring allows the flexibility,
so to speak. We have seen that wire length and
speed of signals on wires are fast developing into
a limitation. It isn't hard to see that wiring must
be minimized, shortened, removed, or otherwise
offset. Also, it isn't difficult to see that flexibility
may be lost in the process. In truth, the two are
really at odds.

The passing of time
The first thought in minimizing wire length is to
reduce it. Make everything smaller. Yet work is
performed on everything but the wire in this effort.
The result is great reduction of circuit volume with
no reduction in wiring volume. The wiring volume
is now about half the total volume.

If the circuits could be more carefully or cleverly
grouped, it might be possible to remove some
wires. This very laudable thought hits directly at
the idea of flexible circuit blocks. Of course, a
multi-level method of assembling modules is pos-
sible (the mother-board technique),but this is also
basically inflexible. No, it's too bad, but flexibility
has got to go. What is the result? The principle
effect is in design with some small effect on manu-
facturing. The design-and-build process is length-
ened, since manufacture must wait for complete
design. What I have touched on in the last few
paragraphs is the very real present-day problem
facing the industry. Without exception, the tech-
niques being formulated for the next round of elec-
tronic equipment are based on design inflexibility
except at very small levels. Integrated circuits of-
fer no improvement unless coupled with more
complex groupings to minimize or remove wires.

Depositing techniques demand geometric and
topographic design of whole groups of circuits.
Multi-layer printed wiring requires photographic
design processes. These are all at the engineering
and designer level, not below. The entire direc-
tion of the computing industry is toward design
inflexibility.

The advantages to be had must, of course, out-
weigh the loss of quick design and quick change.
The idea of parallel functional performance ap-
peared early to be a design problem. But compar-
ing it to the more basic trend of design, the prob-
lem of inflexible design technique is already here.
Machine speed per dollar is still the principal
competitive issue in selling computers. Any and
all schemes for improving speed will be tried. The
fact that they cause dislocations in the designing
and manufacturing is merely a sign of the passing
of time.

ON TIME
Aside from the weather, time is the subect of more
casual discussion than most. In respect to the
weather, time may be considered the opposite, in
that its passage is highly predictable. In another
way, time is very much like the weather. Both have
a kind of fundamental rhythm or motion. We are
familiar with the inexorable motion of time when
we want to slow it; we know its tortuous passage
when we want to speed it; we know the gradual
acceleration of time as we grow older. In spite of
our subjective notion of time, we live by it, watch
it, cook by it, and measure by it. It is a distinctive
element in almost every modern measurement or
analysis, whether physical, chemical, statistical, or
whatever.

What is it?
It is difficult to describe time. It is certainly one of
the dimensions of the physical universe; but it is
that unusual dimension with only one direction:
positive. Its measurement has progressed from the
hourglass, water clock, pendulum and crystal to
the "atomic clock." Man's attempts to give a stand-
ard accounting of time have encountered such
devious problems as the beginning hour of the day,
the duration of a year, and daylight saving time,
among hundreds of others.

The principle objectives in accounting accurately
for the passage of time are to measure what is done
in an elapsed period of time and to synchronize one

The CONTROL UATA 6S00 Computer System

activity with another concurrent activity. The
range of measurement is considerable. Biological,
mechanical, atomic, atmospheric, and astronomical
events operate in grossly different scales of time.
I t is of interest to examine the relationship of the
duration of real events of a scientific nature with
the corresponding length of time to solve a mathe-
matical model of the event. Scientific computers
were conceived for this work; and for the scientist,
the computation time is of critical importance. For
him, it constrains the depth and complexity of his
model . . . along with the strain on his patience.

This time is real
This is, of course, the familiar "real time" compu-
tation. Visualize an atmospheric model of really
comprehensive detail. (Now I have succeeded in
discussing the two most discussed subjects in the
world, time and the weather.) Could such a model
be solved as fast as the weather? I know very little
about meteorological problems, but I would expect
that the thermodynamic and hydrodynamic com-
putation on a world-wide scale is enormous. It
would be a very happy circumstance if the mathe-
matical model could be reduced to a workable size
for machine solution, and still be effective.

Computing to date has been almost exclusively
slower than real time, with notable exceptions in
some military cases. These cases demand shortened
sights and perhaps qualify only marginally as
scientific. This little drawback hasn't restrained
the burgeoning computer industry one little bit.
The fact is that only occasionally, in the past, has
there been a real demand for such speed. Many
problems which appeared amenable to solution
merely required a single result, once and for all
time. Others were sufficiently beyond hand-solu-
tion as to welcome the machine's help. These kinds
of problems point out or corroborate a new direc-
tion, a decision, a solution; or perhaps they fill a
gap in the store of knowledge, to become useful
later.

Computers made possible the attack on problems
which were never attempted before (no one lost
his job to the machine). This unusual circumstance
is bound up in time relationships. The machine was
built to operate without error for a certain period
of time (usually as good as the designer could do).
The computation, or some major part of it, had to
be possible in less than that errorless period. In
order for the first computer to be successful, its

speed had to be very high or its health very good!
There was some threshold of speed and reliability
under which the computer industry conceivably
might not have been launched. This time relation-
ship was enough to make computing machines
practical.

The question of which problems were practical in-
volves another time-speed relationship. Not all
problems were now practical; only those which

) could be completed in the life of the machine, the

i
duration of funds, the patience of the user, and so
on. This really means that brand-new problems are
available each time a faster computer is made, not
just the first time. It isn't at all difficult to see that
the impetus to make machines faster arises from
these new problems along with the speedier solu-
tion of already-practical problems. We have been
discovering a surprising backlog of new problems.
The continued- in fact, accelerating -demand for
more speed means that more efficiency is needed
in the basic machine operations as well as in the
use of the machine.

It should be obvious that any treatment of the
methods employed in a computing machine must
include a substantial discussion of time. It is the
single outstanding obstacle met by the designer at
every turn. In the following pages, I hope to tread
a forward path in the attempt to overcome the
time obstacle. Remember that time has a way of
fighting back!

We're running out
Modern computer circuits employ high-speed
switches for the complex decision networks. These
switches require a finite time to change from one
state to the other. This time period is an intricate
balance of the electrical demands and constraints
of the immediate surrounding network. Many
careers are devoted to optimum combinations of
materials, geometries, packaging, and processing
of these switches to give the maximum speed with
respect to a set of operating specifications. Many
careers are devoted to finding the optimum adjust-
ment of operating specifications to take advantage
of the best available switch. Needless to say, the
degree of perfection in this optimization is among
the highest known in any field. Designers of the
newest computers are able to depend on extremely
fast and reliable components. It is no longer pos-
sible to foresee a factor of five or ten times speed
improvement in the components now in use, or

like them. A factor of five or so was a working re- minimum and maximum rate of operation. Not-
quirement for beginning a new computer not long withstanding the tolerance problem, the unclocked
ago. This factor came exclusively from the basic methods offer some advantages.
circuit. Claims made for many new computers tend
to skirt this issue and concentrate on other time
considerations (for example, lumping all of the
man-and-machine times together). This is cer-
tainly understandable and entirely valid. BUT, the
issue really can't be skirted, if we wish to move
the computing machine up to real time or other
comparable uses.

Set your watch
I mentioned earlier the synchronism of concurrent
operations. This is, in some quarters, the signal for
an immediate argument. It seems self-evident that
two mechanisms working in unison must be syn-
chronized if they are to work together. Actually
this is entirely true; the argument is over a more
subtle complication of the mechanism timing. If
two mechanisms are to operate concurrently on
two suitable portions of a computation providing
answers to a third mechanism, the third cannot
proceed until both answers are there. This is, in
itself, a definition of synchronism. The two con-
current mechanisms may be constructed in a way
which insures their simultaneous completion; or
they may be constructed with no thought of the
completion. In either case, it can be demonstrated
that some time waste occurs. The very early com-
puters were designed with a "tight" timing system.
That is, every step of the computation (in fact,
every simple decision or command) was activated
by a central clock. The principal reason was that
these early machines used many simple steps in a
small amount of simple circuits to make up a major
operation. As the economy allowed for more com-
plex circuits, the very tight timing has given way.

Waste of time in a tight timing system is apparent
in every step, since the logical decision made must
be accompanied by a temporary storage. The
storage allows for the circuit tolerances and re-
synchronizes any concurrent events. However, the
circuit tolerances (with regard to time) are not
allowed to accumulate beyond the single time
period. The circuit tolerances have an upper and
lower limit. If these tolerances are allowed to ac-
cumulate over a long series of steps, the earliest
or latest time for the answer would vary consid-
erably. Eventually, this spread of time makes for
time waste, especially with devices which have a

I
The synchronism problem is, most assuredly, an

L engineering problem rather than any other. The
I

methods which I have mentioned are entirely valid.
I That method which produces the most effective

result should be chosen. Matters of electrons, volt-
age, heat, and time have considerable bearing on
that choice. The result must be a clock system of @
dependable tolerances and yet highly effective. In .. this case, a choice of synchronism in-the-large
seems most effective. Computer history can record
a long period of comparison by clock frequency.
That day is gone. No longer is the basic clock a
reliable measure of the performance. The simple
reason is that there either isn't any clock at all or
that synchronism has moved to a higher level. It
is sufficient to say here that the move was fruitful.

Other internal time considerations are also im-
portant. The most common one mentioned is the
memory access time. This is defined as the time
taken to fetch a word from memory. It is normally
measured from the instant the address is formu-
lated until the fetched word is available for com-
putation. This is usually about half the total stor-
age time in destructive memories. With one
memory, a three-address instruction would require
three storage times plus compute time. With two

I
memories having the ability to overlap the second
access with the first restore, the above case could
be one and a half storage times (three access
times) plus compute time. The smaller the ratio of
access time to storage time, the better this overlap
system looks. Note, however, that the overlap
doesn't work for addresses to the same bank of
memory.

An extension of the overlapping memories might
simply add enough memory banks to reduce the
probability of referencing the same bank. To this
can be added schemes for overlapping more than
the access periods and schemes for reducing ad-
dressing bottlenecks. These are certainly important
and represent significant speed improvement.
However, memory time is typically an integral
sequential element in every instruction, and as such
cannot be reduced to zero. That is, it can't unless
memory acquisition is separated from the instruc-
tion. To accomplish this, a set of high-speed regis-
ters may be included in the computer to serve as

buffer between memory and arithmetic. These
registers must refill concurrently with computing
and must empty to memory also concurrently with
computing.

A concurrent structure such as described above
places the memory in a secondary role of refill and
empty. Time for this secondary role is a vague
complication of memory bank overlaps, conflicts,
priorities, and so on. It defies generalizing in the
time domain. It, nonetheless, makes for a faster
computer and points the way to even more speed.
It is most important to note here that this speed
increase is entirely aside from circuit or com-
ponent speeds.

By now, the reader will be aware (and tired of
hearing it) that concurrency is the magic way
around the time obstacle. The technique need not
be limited to concurrent memories. Arithmetic
units may be arranged to take advantage of this
technique. In fact, it is within reason to consider
independent and concurrent processors as an ex-
ample of the principle. For principle it is, just as
serial and bit-parallel computing represent the
evolving principles in the past.

Up and down
I can't leave the subject of time without including
up and down time. Machines are subject to an im-
perfection never quite so small as to be neglected.
To be sure, methods are available to make this
bearable.

Time plays a part in these methods. Aging of com-
ponents is no longer a primary factor in machine
failures. Preventive maintenance allows the ma-
chine to be exercised under stress and under criti-
cal examination. For such examination to be
critical the engineer must have enough time to
thoroughly test each element. Here is where the
very fast computer really shines. Many more trials
may be made in a period of real time than with
slower computers. Failure may be stated as a
statistical function of the number of trials. One
failure of a device labels it as faulty but may not
be enough to discreetly identify the culprit. Sev-
eral errors under the critical eye of the mainte-
nance engineer may suffice to identify it. There-
fore, the higher rate of trials in real time distinctly
improves the maintenance. Axiom -faster com-
puters are more reliable.

LOGIC AND NUMBERS
I

To a logician, most deductive reasoning can be
: 	 formulated with symbols and rules very similar to

mathematics. In fact, arithmetic could be described
as the set of laws governing the logic of numbers.
Numerical computation is the logical manipula-
tion of that class of symbols called numbers. Com-
puting machines, of course, are constructed to obey
the rules of arithmetic. A common understanding

&P 	 about these machines is that their basic elements
are arithmetic in nature. Such is not the case. The
basic elements are only logical and must be espe-
cially interconnected for arithmetic.

I
I The machines contain wired-in deductions con-

cerning the beginning arguments. The '<wiring-in"
is accomplished according to a generalization
(about the numerical rules or other logical rules).
The deductions are certainties arising from this
generalization. By appropriate experiments, the
deductions may be tested, with the resulting con-
firmation or rejection of the generalization. Since
the rules governing the wired-in logic of the

1

I

machine have been fundamentally arithmetic, the
confirming experiments are well known. In fact,
the generalizations made in the first place are well
known and proven.

To be 	certain
The procedures for using the machine are also
based on a deductive method. The factual certain-
ties arising from these procedures are also subject
to confirming experiment. The machines, one
could say, must first be tested and proven; then
the use must be tested and proven. Since the prin-
cipal use of computing machines has been arith-
metic, the problem analysis and the method of
solution lend themselves to reasonable test.

Oi course, the machine can be turned around and
used to perform the tests itself. Assuming the
wired-in logic is entirely confirmed, the machine
may test the proposed use by solving an experi-
mental problem and comparing with a known
answer. The solution is found by an organized pro-
gram of basic machine steps. We stipulate here
that the basic steps are proven. Therefore, the ex-
periment should show that the program represents
an accurate and correct generalization of the solu-
tion. If the test fails, some aspect of the generali-
zation (or its specific embodiment in the program)
is rejected.

There are two points of view about this facet of
computing machines. The less there is wired into
the machine in the way of logic, the more freedom
there is for the programmer. On the other hand,
with little wired-in logic, the chance for error (of
a logical kind) is greater. I suppose this will be
subject for argument forever. The current prac-
tical solutions contain a minimum of wired-in
logic. The principal reasons for this cover areas
such as: inability to provide a universally accept-
able higher level of logic, substantially longer de-
velopment periods for confirming the logic, and
simple economics of the extra hardware. None of
these need be a permanent deterrent to more in-
ternal logic.

What has happened in recent years is an attempt
to establish this higher level of logic or reasoning
by means of program organization. Deductive
reasoning demands unambiguous symbols and
words as well as the grammatical rules of language.
Actually, some of the reasons why higher levels
are not built in the machines apply to the pro-
gramming as well. There is a chaos in the present-
day universal languages. The development periods
for the programs are fully as long as for the basic
machine. Huge expenditures of time and money
have been made for the effort. Perhaps a look at
the logic already built into a modern computer
would help.

You pick yours . . .
The fact that computer circuits are more logical
than arithmetic is of considerable interest to the
student of artificial intelligence. To the engineer,
however, the circuits reduce to a very basic switch-
ing logic. In this form, open and short circuits
represent the arguments and deductions. Electrical
current is made to flow (or not) in resistance by
the action of transistor switches. The resulting
voltage causes other switches to close (or not).
Combinations of switches cause various results.
These combinations remain fairly simple since the
electrical constraints, along with speed losses,
limit the kind and number of interconnections.
Being simple, the combinations lend themselves to
proof by truth tables. This is a form of symbolic
logic itself in which initial conditions are the co-
ordinates of a table and the results fill out the
table.

Simple combinations can be wired and connected
end to end in sufficient chains to form a complex

logical combination. The number of combinations
possible increases rapidly with each added link in
the chain. In order to perform simple arithmetic
on whole numbers, those logical combinations are
selected which obey the rules of arithmetic. It is
entirely possible to construct logic for any known
number system. However, the binary-octal system
is formed by the simplest logical combinations of
switches, and this is the most commonly used sys-
tem inside the computer. Converting between
number systems is a logical operation which can
be built into the machine. This particular question
is determined by the designer with most regard to
the average time wasted in a computation con-
verting and re-converting between the internal
number system and the external. In some cases, the
total time thus spent has been demonstrated to be
so high as to warrant use of the external system
(usually decimal) internally as well. This is a fair-
ly good example of the selection of wired-in versus
programmed logic.

. . . I'll pick mine
I t is, of course, necessary to deal with numbers
other than whole numbers, for example, fractions.
It is necessary to mix, group, and compare numbers
in more and more complex ways. Especially in
solutions of scientific problems, the range of mag-
nitudes is enormous and not very predictable. For
these problems a logarithmic arithmetic is best
suited. In modern scientific computers this is called
floating point arithmetic.

There are a number of varieties of floating point
methods, being different by the superficial detail,
rather than fundamentals. Although this kind of
arithmetic is a good deal different from simple
integer or fractional arithmetic, these can be usu-
ally computed in the floating units.

The typical scientific problem is solved by repeti-
tive steps involving intermediate and partial an-
swers. As the problem solution progresses, the
error in defining the original numbers is increased
by the errors involved in each arithmetic step. This
doesn't mean that the deductive logic of the
machine's circuits have somehow produced uncer-
tain answers. At the level of the circuit logic, the
answers are still certainties. However, in inter-
connecting by wires and by program steps the
floating point operations, an interesting limit oc-
curs. It is possible to manipulate numbers within
the machine of a certain maximum size, or numbel

of digits, that size being limited by the size of 	 OF PARTS AND MECHANISMS
register built into the machine. Numbers can there- In this industry, progress has kept moving with
fore be introduced with a limit on the number of little advance warning of new directions. The lure 1significant digits and thus with an error of some- of profit stimulates innovation, and the spur of
thing less than the least significant digit. This error
is real and can contribute measurably to the accu-
racy or significance of the answer. For example, it
is entirely possible for a long series of arithmetic
steps to accumulate an error so large as to com-
pletely obscure and invalidate the answer.

There are methods available for minimizing this
sort of floating point loss of significance and accu-
racy. They range from well accepted methods to
quite radical techniques. It must be the designer's
duty to provide for as many of these techniques
as possible without loss of convenience or speed.
This is a good example of a very difficult selection
of wired-in versus programmed logic. The logical
methods available to the designer are fixed by the
nature of the circuits he uses. These are usually
of a very simple kind, and he is required to work
at the most basic level. It is a tedious hand job,
especially as the complexity of the circuit modules
increases. There are no barriers more positive to
the computer engineer than his use of the last
connector pin or transistor location. Fitting the
hundreds of thousands of elements together in a
sensible array demands a sensible plan.

I t can be stated with assurance that the optimum
amount of built-in logic will be subject of heated
argument. In order to be completely flexible, some
convenience and speed must be sacrificed. In order
to aim at a higher efficiency in some area, other
areas may suffer or be completely ruled out; hence,
limiting the general-purpose aspect of the machine.
As a matter of fact, though, these thoughts apply
to the program standards as well. In order for
machine languages to be thorough and efficient,
some loss in flexibility will be apparent.

The modern computers have provided a few
higher level built-in operations along with the
basic ones, most notable being the floating point.
The risks in going further are very great. One of the
few criteria which makes sense is the computing
speed per dollar of cost. The larger the computer,
the more freedom there is to include extras. How-
ever, it is important to realize that the very large
economy-size computer is not feasible unless the
user gets large economy.

competition forces the early arrivals to defend their
positions by improved performance. This is a proc-
ess, described as "creative destruction," where not
all are winners. Progress in computing is directly
related to time and performance, with economic
factors closely following. It is the step up in per-
formance that the engineer seeks by new devices
and new logic. The first endorsements don't come
from the economist, but the lasting techniques do
need the stimulant of wide acceptance with result-
ing savings. The techniques open to the engineer,
therefore, tend toward a rather narrow range of
devices.

Fa~rchildSemiconductor Div.

It is especially interesting to me that the most!
modern universally-accepted device for computer
circuits, the transistor, is a triumph of geometry.
Most of the recent improvements in the transistor
come from ingenious methods for providing a thin
layer here, a thick layer there, a large surface here,
a minimum surface there. The beauty of geometric
design has long thrilled men. The transistor mixes
crystalline symmetry with etched surfaces visible
only by microscope. More than this, the electrical
reactions of the transistor can be sharpened to
really surprising speed. For the engineer familiar
with "lumped constant" effects, the modern com-
ponents are a revelation. (Note : Lumped constant

-	 effects refer to idealized electrical engineering
methods.) Although transistor speeds are still in
the order of several hundred times slower than
the speed of light through the space taken up by
he device, the speed is still a surprise. Transistors
nake excellent switches when limited to low volt-

ages. The speed with which such switches can be
opened or closed has increased by several hundred
since they were first introduced. Wide acceptance
has added the economic stimulant to the very de-
sirable properties of the transistor.

Machines built with transistors today utilize the
most simple known circuits. Several variations are
available with relatively equal simplicity. The de-
signer's choice is formed from an amalgam of
component capability, size and shape, and the
geometry of the packaging. Speed being the prime
objective, heat, power, construction methods, and
so on are the variables for his use.

Good losses
A recent packaging technique with very good
efficiency of volume usage is the "cordwood pack-
age used in the Control Data 6600. This package
gives four surfaces for etching the interconnec-
tions. This structure is a step up in module com-
plexity from the small single-board cards of recent
years. The density of circuits per unit volume is
up by three or four over the cards. A number of
gains and losses arise from this kind of packaging.
The loss of most importance is in standardization
of modules. The package contains so much logic
that a flexible minimum set of module types would
sacrifice considerable potential efficiency. Another
problem is the extra logical complexity of the mod-
ule. It is of little use to apply mechanized tech-
niques to help with the design of these modules.
The job of designing with them becomes once
more, as in the past, a hand job. Engineering of
computers utilizes geometric and topographic
methods more than ever.

These are "good losses, though, since the gains
far outweigh them. The improvement in volume
density is significant, and well worth the effort
in improved speed. The increase in complexity
within the module allows for two conditions of
circuits, those inside and the interconnections be-
tween modules. The effect is to group logic more
efficiently in modules so that advantage may be
taken of the internal speed and loading rules.
Internally, wire lengths of less than three inches
are encountered, whereas the average external
lengths are perhaps ten times that. This reflects in
longer transmission times. The external lines may
provide only enough current and voltage to sup-
ply (without further transmission time) a fraction
of that available internally. These and, of course,
the problem of module connector pins and back

C
panel wiring volume all add up to a plus for the
more complex "cordwood package. The loss of
flexibility is unfortunate but by no means defeating.

Other more specialized modules are also possible
with such techniques, notably the memory pack-
age. With suitable connectors and internal frame-
work, a memory may be constructed with compleke
addressing and storing circuits in one package,
This more or less reverses the losses just mentioned,
since a memory package may be considered a
standard unit to be "plugged in" wherever re-
quired. In the Control Data 6600 Computer, such
memory modules are made up in 4096 word (12-
bit) size for use in the peripheral processors. Also,
five modules make up one 60-bit memory bank
in the central memory.

Form, not dimensions
Packaging techniques which greatly increase the
density of circuits are also likely to increase the
heat density. The choice of circuit open to the
designer may allow a low power dissipation, but

1

generally no large factors are possible, especially
for increased speeds. Cooling, or maintaining con-
stant temperature, is very important. Moving air
past the dissipating element has been fairly suc-
cessful in the past. However, one aspect of higher I
density is the restriction of air flow. Cooling by
cold bar conduction, radiating fins and plates, cir-
culating coolant, and the like are among the way
out of the dilemma. The 6600 Computer is freon-
cooled.

In very large systems, the sheer volume of logical
and memory hardware demands several cabinets
or bays of chassis. The length of interconnections
between the different portions of this array may be
a serious speed problem itself. No design is so
cooperative as to allow neat groupings adjacent
to each other without the long wire. The most
effective geometric forms are the cylinder with
interconnections at the axis or the cube with in-
terconnections on the surfaces. The sphere, of
course, might appear superior to either. However,
the fabrication complexity is a significant draw-
back. My personal preference is the cylinder. The
axis can be the location of interconnections as well
as the pivot for moving aside the adjacent parts
of maintenance. The principal advantage is in
uniform interconnection lengths with quite prac-
tical fabrication methods.

How to succeed . . .
I suppose the picture of computing is of a topsy-
turvy growth obeying laws of a commercial "nat-
ural" selection. This could be entirely accurate
considering how fast it has grown. Things started
out in a scholarly vein, but the rush of commerce
hasn't allowed much time to think where we're
going. In fact, the essential organization of com-
puters hasn't changed at all. The real differences
are in the fringe "special effect" operations and
the internal methods, which are hidden except for
their effect on performance. Even the peripheral
systems are quite similar to each other.

. . . without being trying
In my mind, the greatest potential for improvement
is with the internal methods (if this isn't already
clear), at the risk of loss of fringe operations. The
work to be done is really engineering work, pure
and simple. As a matter of fact, that's what the
results should also be -pure and simple. It's time
to set about developing new wiring schemes and
new packaging schemes that really fit together.
The best of what has been done should be the
guide. Most of the time, the best isn't very spec-
tacular or clever; it's just the best. Physical volumes
won't reduce as quickly as we'd like; but they will
reduce some. Building blocks won't be very flex-
ible; but they can be made neat and tidy. Trans-
missions of signals won't exceed the speed of light;
but sometimes delays are useful. The direction is
clear and we'd best get about it, before our ele-
phant stops growing.

	CDC.6600.1963.102641207.fc.src.tif
	CDC.6600.1963.102641207.p1.src.tif
	CDC.6600.1963.102641207.p2_3.src.tif
	CDC.6600.1963.102641207.p4_5.src.tif
	CDC.6600.1963.102641207.p6_7.src.tif
	CDC.6600.1963.102641207.p8_9.src.tif
	CDC.6600.1963.102641207.p10_11.src.tif
	CDC.6600.1963.102641207.p12_13.src.tif
	CDC.6600.1963.102641207.p14_15.src.tif
	CDC.6600.1963.102641207.p16_17.src.tif
	CDC.6600.1963.102641207.p18_19.src.tif
	CDC.6600.1963.102641207.p20_21.src.tif
	CDC.6600.1963.102641207.p22_23.src.tif
	CDC.6600.1963.102641207.p24_25.src.tif
	CDC.6600.1963.102641207.p26_27.src.tif
	CDC.6600.1963.102641207.p28_29.src.tif
	CDC.6600.1963.102641207.p30.src.tif
	CDC.6600.1963.102641207.bc.src.tif

