

IL LIAC 1 V Quadrant

The I LLl AC IV System represents a fundamentally different approach to
data processing. The limitation imposed by the velocity of light, once
thought to be an absolute upper bound on computing power, has been
stepped over by several approaches to computer architecture, of which the
ILLIAC IV is the most powerful by as much as a factor of four.

The conquest of the limitations of the velocity of light was foreseen by
Herman Kahn and A.J. Wiener in 1967, when they wrote: ".over the
past fifteen years this basic criterion of computer performance has
increased by a factor of ten every two or three years While some will
argue that we are beginning to reach limits set by basic physical constants,
such as the speed of light, this may not be true, especially when one
considers new techniques in time sharing, segmentation of programs to add
flexibility, and parallel processing computers. . .(such as). . .the ILLIAC IV

#I
. a .

ILLIAC IV represents a significant step forward in computer systems
architecture offering

- greatly improved performances:

200 MIPS computation speed

109 bitslsec I10 transfer rate

106 bytes of high-speed integrated circuit memories

2.5 X 109 bits of parallel disk storage

- contemporary technology:

ECL circuits

semiconductor memories

belted cables

- and a new approach to the art of computing using parallelism,
which offers an opportunity t o programmers to utilize the vast
power of the system as effectively as possible.

MAJOR SYSTEM ELEMENTS

As shown in the accompanying system diagram, the major elements of the
ILLIAC IV System are the Array Subsystem, the I10 Subsystem, the Disk
File Subsystem, and the B 6700 Control Computer Subsystem.

The main computing power resides in the Array Subsystem. The ECL
circuit family is used to implement the logic in the Array Subsystem. In the
array is a Control Unit (CU) directly governing 64 identical Processing Units
(PU). Each PU is principally a combination of a Processing Element (PE)
and a Processing Element Memory (PEM). The PE has no independent
control except for mode, some data dependent conditions, and addressing
within i ts own memory. Mode control permits a PE to accept or ignore a
broadcast control sequence from the CU, depending on the current status
of i t s mode bit. The PE is essentially a four-register arithmetic unit capable

A of executing a full repertoire of instructions having 64-bit, 32-bit, and &bit
operands. Directly associated with each PE is a PEM having 2048 words of
64-bits each, 4096 words of 32 bits each, or some combination of both
sizes.

The 110 Subsystem controls the routing of data among the other major
elements of the system a?d a 1024-bit wide interface that may be used for a
variety of purposes, depending on the application.

The Disk F'ile Subsystem provides an intermediate data storage for the array
having a storage capacity up to 2.5 X lo9 bits of storage and a transfer rate
up to lo9 bits per second.

A B 6700 is the control computer for the ILLIAC IV System. This
computer provides executive control, facility allocation, peripheral
equipment control, 110 initiation and control, fault recovery, and program
assembly and compilation.

The logic of the I10 Subsystem, the Disk File Subsystem, and the B 6700
Control Computer Subsystem is implemented in the CTL circuit family.

Each of these elements of the system is discussed in more detail on the
following pages.

ARRAY I
SUBSYSTEM

CONTROL UNIT

L--,--,,,,,J
lL LlAC I V Functional Diagram

FEATU.RES OF ARRAY OPERATION

Efficient operation of parallel array programs requires machine features
that are unfamiliar to designers and users of conventional serial
machines. The following discussion, which highlights the operation of the
array at the individual instruction level, has several sections. The first
presents the conventional aspects of array operation, and hence, discusses
what appears to be a conventional instruction set. The other sections
discuss the capabilities which have been added to facilitate array processing,
such as on-off control of the Processing Elements, routing of data among.
Processing Elements, one-clock alignment and normalization of floating
point numbers, independence among PE's of the address field of the
instruction, and broadcasting.

CONVENTIONAL INSTRUCTION SET

There are 65 computers in the ILLIAC IV array. Of these, 64 are identical,
and are called the Processing Elements (PE). The 65th computer is
imbedded in the Control Unit (CU). Most instructions are conventional,
such as add, multiply, fetch, store, and are either PE or CU instructions. A
PE multiply instruction, for example, causes the contents of every PE
accumulator to be multiplied by a second operand specified in the address
field of the instruction. A CU add instruction adds the contents of one of
the words of the local operand store to the contents of one of the four
accumulators in the CU. The CU computer is used for purposes like loop
control. The major burden of the data processing is on the PE's, whose
instruction set is relatively conventional, containing instructions such as
add, multiply, logical OR, divide, fetch, store, and register-to-register
moves. Typical instruction times are given on page 8.

ONE CLOCK NORMALIZATION

All PE's must operate together with essentially no control response back to
the CU. For example, when normalizing sums from floating point addition,
every PE has a different shift amount. I f the various PE's took different
times to shift, the CU would have to wait a minimum of 240 nanoseconds

until a l l PE's had reported the completion of shifting. The 240-nanosecond
period is the round trip time for the cabinet length of over 50 feet.

A barrel switch is, therefore, provided in the PE that can shift any amount
in one-clock time. The CU, giving the command to normalize, does not
wait for a response before going on. Likewise, all shift instructions take
one clock time since they use the same barrel switch.

ROUTING

Routing is a mechanism whereby the PE's can exchange data rapidly and
simultaneously. The instruction that accomplishes this is called the "route"
instruction. Routing consists of taking 64 words of data in the 64 registers
in the 64 PE's and shifting it among the PE's by distance N modulo
64. That is, data starting in PEo winds up in PEN; data starting in PE1
winds up in PEN+^. All such shifts are done simultaneously, so that all 64
words of data are transferred in one shift time. Shift time is a function of
N, being the minimum of 125 nanoseconds for distances of either 1,8, -1,
or -8.

The above figure shows this end-around routing connection
schematically. In addition to the neighbor-to neighbor linkages which form
the PE's into a ring, there are connections of PE's eight apart such that data
can leapfrog intermediate PE's when the distance to be covered is large.

ON-OFF CQNTROL

On-off control of the PE is effected with control bits called mode
bits. When the mode bit is set, the PE is operating normally; when the
mode bit is reset, the PE will not execute the current instruction. Resetting
the mode bit is, therefore, a mechanism whereby the PE can branch
forward in the instruction stream.

There are two ways of controlling the PE's with the mode bits. Mode bits
may be set by the result of tests in the PE's, or they may be set
unconditionally by the CU. To illustrate the first method, assume a case
where the PE should control its own performance (Let P be the PE
number):

IF X(P) >Y(P) THEN DO STATEMENT A,
ELSE DO STATEMENT B.

In conventional computers the code would read something like the
following:

I f X(P) >Y(P) then go to L;
Statement B;
Go to M;

L Statement A;
M Next. statement;

In the lLLlAC IV, the code would read as follows, and 64 passes through
the code would be executed simultaneously.

I f X(P) >Y(P) set mode bit (P) to ON;

Statement A;

Complement mode bits;

Statement B;

Set all mode bits on;

Next statement;

In the extended FORTRAN being implemented for ILLIAC IV, PE's can be
turned on and off by "control vectors." These vectors have one bit per
element, and are used to mask out any given operation. The control vectors
are fetched to the CU and sent directly to the mode bits of each PE.

Since the PE's each can operate on either one 64-bit word or two 32-bit
words, two separate mode bits are provided in each PE for 32-bit operation
so that control vectors or PE tests can turn on and off the halves of the PE
independently of each other. The effect, as far as mode bits are concerned,
is like having 128 independent 32-bit Processing Elements. Mode bit
control does not interfere with routing.

I
INDEPENDENCE OF ADDRESSING AMONG PE MEMORIES m
Although each PE instruckion is for 64 PE's, it contains only one address
field. However, each PE has its own independent memory (PEM). To
achieve independence of addressing within the PE memories, each PE is
provided with an index register. The contents of this index register can be
specified to be added to the content of the address field.

The simplest example of the utility of the index register lies in the fetching
of a matrix that is stored skewed (See illustration below). By not indexing,
a matrix row is fetched. By inserting a function of the PE's own number

into the index register, and then indexing the address, a column of the
matrix is fetched into the PE's (Column 4 is shown in black below left).

Indexing at the PE level is also allowed on shift counts of shift instructions,
and on the bit number of the bit-manipulation instructions, providing for
versatility in nonnumerical processing. In double precision arithmetic, for
example, the normalization correction, once developed, is inserted into the
index register and used to control the double-length shift that accomplishes
normalization.

BROADCASTING

Every PE instruction is sent to the PE's from the CU as 266 enable levels to
each and all PE's. Accompanying this set of enable levels is a 64-bit
"common data bus" that also goes to a l l PE's. Depending on the specific
instruction and variant thereof, the data on the common data bus is used
within the PE's as a 64-bit literal, or the least significant 16 bits may be
used as the address of an operand in memory, or to designate a register in
the PE, or as a shift distance. Memory addresses and shift distances may be
further indexed in the PE, as described above.

This facility to transmit 64-bit literals is used in the software to transmit or
"broadcast" those variables to the PE's that are constant across all PE's, as
in the expression:

where P is the PE number.

Variable A will be fetched to the CU and broadcast, being the same for al l
PE's; whereas, B(P) is distinct in each PE and will be fetched out of the PE's
memory.

PERFORMANCE

Algorithms for estimating the "speed", "power", or "throughput" of
computers have been the most elusive and illusory in the industry. Among
the simpler means employed have been the clock rate, add time, and more
recently, "Mips" (million instructions per second). Bench mark programs
have also been used with more success. Presented here is a discussion of the
clock rate, the instruction times for some typical instructions, and a
discussion of Mips. Such oversimplifications are recommended for use on
only the grossest basis for comparison among various computers, since the
actual performance on any given application is dependent on factors such as
the memory allocation algorithm used, the compiler efficiency, as well as
the application itself and the efficiency of the application programs. Listed
below are salient characteristics of ILLlAC IV which depict the "speed",
"power", and "throughput" of the machine. The following data are based
on a 64-PU system. Future copies can also be built with 8, 16, or 32 PU's:

Data Rates

Between the 64 PE's and their 64 PEM's - 9,362,285,714 bitslsec (64 paths
at 64 bits each 312.5 to 437.5 nanoseconds)

Between array memory and parallel disks - 1,004,000,000 bitslsec
(980.468 transfershc of 1024 bits each)

Word bus of the B 6700 -40,000,000 bitshec

Clock Rates (MHz)

Array Subsystem

I10Subsystem

B 6700 Subsystem

Clock track on parallel disk file

Memory Sizes

Array Subsystem 8,388,608 bits or
(May be expanded in future copies) 1,048,576 bytes or

131,072 words of 64 bits or
262,144 words of 32 bits

B 6700 Subsystem 524,288 words of 48 bits
(Modular in increments of 16,384 words)

Parallel disk file 2,516,582,400 bits
(Modular in increments of 78,643,200 bits)

Memory Times

Array -cycle time 200 nanoseconds (bare memory)
312.5 nanoseconds (in system)

B 6700 - cycle time 1.2 microseconds

Parallel disk system -access time 19.6 milliseconds
(Average access time for a single item)

FLOATING POINT ADD AND MULTIPLY TIMES

Floating point add time, including alignment of operands, addition, and
normalization of the sum is 4.9 nanoseconds per pair of 64-bit operands,
and 2.9 nanoseconds per pair of 32-bit operands. This is based on the time
to execute one add instruction simultaneously on 64 pairs of 64-bit
operands in 312.5 nanoseconds, and on the execution of one add
instruction simultaneously on 128 pairs of 32-bit operands in 375
nanoseconds.

Floating point multiply time, including normalization of the product, is 8.8
nanoseconds per pair of 64-bit operands and 4.9 nanoseconds per pair of
32-bit operands. This is based on the time to execute one multiply
instruction simultaneously on 64 pairs of 64-bit operands in 563

nanoseconds, and on executing one
m u l t i p l y instruction simul-
taneously on 128 pairs of 32-bit
operands in 625 nanoseconds.

These add and multiply times
assume that the operands are al-
ready in place in the registers of
the PE's. This was true for 50
percent of the add instructions and
for over one third of the multiply
instructions in the codes sur-
veyed. For the other 50 percent
add instructions and the more than
60 percent multiply instructions, a
memory access time of 375 nano-
seconds must be added. Overlap in
the Control Unit will hide an
undetermined fraction of this
memory access time.

ILLUSTRATIVE KERNELS

To illustrate ILLlAC lVrs speed of operation the times required to evaluate
some simple arithmetic expressions are given.

For 64 variable
for all j - 0.875n

(Method of nested polynomials)

MIPS

"Mips" (million instructions per second) is a measure that has been widely
used to describe the computing capabilities of various machines. A figure
of 200 Mips is used for the I LLl AC IV, based on a large set of assumptions
which are necessary as there is no agreement in the industry as to what
constitutes an instruction. These assumptions include:

The instruction frequencies counted from 12 different codes
are typical.

The overlap in the Control Unit is 95 percent efficient and the
proportion of Control Unit instructions is less than 25 percent
of the total.

The code uses the full 64 Processing Elements efficiently.

For codes using only one of the 64 Processing Elements a t a time, the figure
of 4.5 Mips is used.

THE EFFECT OF PARALLELISM ON THROUGHPUT

As is well known, the throughput of ILLIAC IV is problem dependent. To
oversimplify, assume some fraction, x, of a problem is stubbornly serial and
that the rest of the problem is perfectly parallel and fits the 64-PE
width. Also assume that the problem takes a time, Ts on a hypothetical
one-PE machine, then it takes a time, Tp, on the parallel machine:

Thus, if 90 percent of the problem is perfectly parallel and 10 percent is
stubbornly serial, one expects a speed improvement by a factor of 8.8 on
ILLIAC IV.

The above analysis is an oversimplification because, in general, portions of
problems are neither perfectly parallel nor perfectly stubborn about being

serial. Among the items that can be done to allow some parallelism of
operation in a problem that appears to be serial are:

Adopt some variation in the algorithm that allows
parallelism. In some cases the variant algorithm will be less
eff icient mathematically than the stubbornly serial
algorithm. However, because it allows parallelism, it causes a
net gain in efficiency on the I LLlAC IV. Matrix inversion and
data transfers offer examples of this sort.

Reallocate the memory so that the variables that were all in
one PE, and therefore could only be treated one at a time, are
spread across many PE's.

Thus, programs that are executed on the ILLIAC IV, in comparison to the
same problems being solved on a hypothetical one-PE serial machine, run
with an efficiency that is a combination of many effects. For example:

bl Some small pod6n of the problem really is stubbornly serial,
and runs with no speed-up over the one-PE comparison case.

Some larger portion of the problem runs efficiently in parallel,
approaching a 64: 1 speed-up over the one-PE comparison case.

Much of the program runs in parallel on the machine, with
varying degrees of efficiency. This variation is due to parallel
operations that do not use 64 PE's and also to the cases in
which the parallelism was bought at the price of a less efficient
algorithm. For these sections of the code, the speed-up over
the one-PE comparison case is much greater than 1:l but less
than 64: 1.

Therefore, it can be seen that the speed-up factor available on the l LLIAC
IV is dependent on the application and on the cleverness of the
programmer; it will vary between 1 : 1 and 64: 1 over a hypothetical machine
with only one PE. It is also true that better speed-up is expected in practice
than that predicted by a naive separation of problems into "serial" vs.
"parallel".

APPLICATIONS Fragment the indices into their individual bits, setting

The power of parallel processing is most effectively applied to solving
problems when they are arranged in a parallel manner. To illustrate the
methods involved, two il lustrations (one computational, one
non-computational) are given.

FOURIER TRANSFORMS

As an analytical technique, transformation to the frequency domain has too
many applications to catalog. Fairly recent developments have produced a
collection of "fast Fourier transform" methods. Perhaps, the first widely
read of these is from the article by Cooley and Tukey.

Fast Fourier transforms turn out to be ideal for ILLlAC IV, operating at
almost full efficiency, thereby opening up all those problems amenable to
solution in the frequency domain to efficient attack. These include linear
differential equations, filtering, simulation and signal analysis.

The fast Fourier transform method is described as follows:

(=N) samples of some time 2"' Let Ac, where k runs from 0 to 2""-1, be the

The method is based on the observation that wjk is the product of factors
related to the fragmented indices, and that these individual factors (such as
wjm-1 or wk0) are repeated in a regular way in the 22m values of W J ~ .There
are only 2m of these factors.

The transformation process proceeds as follows:

The Ak, multiplied by appropriate W factors, are combined pair-wise into a
vector Bl,k. The vector B1 k is combined pair-wise into a vector B2,k, and
so on until a vector Bm,k is iormed.

The vector Bmnk is the desired transform Xk, except for the ordering of the
index. I f we reverse the order of the bits in the index k (call that k'), then
we find that Bmgk' = Xk.

The pair-wise combination of the elements of each succeeding vector to form
the succeeding vector involves elements of the vector that are successively
closer by factors of two. Consider an example where m = 10; there are
1024 points in the prime function. The formation of the elements of the
vector B1 involves elements of Ak that are 512 samples apart. Each
element of B2 is the sum of two elements of B1 that are 256 samples apart
in the index, down to BI0, whose elements are the sum of neighboring
elements in Bg.

The equations for the vectors Bqrn are, writing the indices in their
fragmented form

On ILLIAC IV, the Ak elements are divided into 64 equal pieces. For the
example of 1024 time samples, there are 16 per Processing Element
(PE). The first PE contains the Ist, 65th, 129th, etc. time sample; the
second PE contains the 2nd. 66th, 130th. etc. time sample, and so on
throughout all PE's. Computations for all but the last 5 steps are therefore
carried on within the individual PE's with no interaction between PE's. For
the 5th from the last step, we must swap operands between PE's that are 32
apart as indicated in the top layer of the accompanying figure. This is a
simple route by distance 32. For the 4th from the last step, we must swap
operands between PE's that are 16 apart as indicated in the next to the top
layer of the figure. Half the operands are routed by a distance +16; half by
a distance -16. The third from last step routes half the operands by distance
+8, half by distance -8. This continues through distances 4 and 2 to form
the results.

As described above, the results are produced correctly, but in scrambled
order. Rearrangements of the data can be accomplished by fetching,
routing, and storing. Approximately 160 or less route instructions are
required to move the 1024 result points into their proper locations.

Data Transfer Paths, Fast Fourier Transform
(16PE Example)

TABLE LOOK-UP

Table look-up is an excellent example of the versatility of parallel
processing. Investigation reveals several powerful techniques for
implementing table look-up. The choice depends mainly on the behavior of
the search key and the table size and regularity. Among these techniques
are the following:

Replicate the Table - 64 copies of table. Tolerable only if the
table is small.

Repeat the Table Several Times and Route the Computation - If
the table were repeated eight times, for example, the first section
would appear in PE's 0, 1, 2. 3, 4, 5, 6, and 7. The second
section would appear in PE's 8 through 15; the third, in PE's 16
through 23 and so forth to the las t section, which would appear
in PE's 56 through 63. The table look-up would now be
performed eight times, once for each section of the table. At
each performance the routine would recognize whether it was in
the proper section of the table in each PE. By the time the eight
look-ups were complete, 64 values would be obtained. The
actual number of repetitions for a particular problem depends on
the relative size of the table and the amount of computation time
available as a trade-off.

Compute -Some tables can be replaced by computation. When
this is true, it is because, in a serial machine, the computation
takes longer than the table look-up. In a parallel machine, the
computation runs 64 times as fast, so that the trade-off may
favor computation.

Interpolate More Intelligently - Use of more complicated
interpolation formulas results in fewer entries being needed in a
table. This is a special case of substituting more computation for
less table.

Use Regularities of the lndependent Variable -Suppose a large
table is storing f(x), where x is the independent variable. In
many problems, x will vary smoothly from one PE to the
next. We keep in any given PE, say PE number "p", only that
portion of the table that refers to values of f(x) for x near the
value xp contained in that PE. As xp changes, we come to the
case that f(xp) is no longer contained in the portion of the table
in PE number p. Then we digress to a table rearranging routine,
which, in general, will only have to move copies of values from
neighboring PEs.

-- 7

PE NUMBER PEO PE1 PE2 P E ~ PE4 PE5 PE6 PE7

VALUE OF X (AT
THIS STAGEOF THE 4.5
COMPUTATION)

illustration of Table Stored Using Regularities of the lndependent Variable

The accompanying figure shows an example of such a table
having 100'items with only 25 items required to be stored in each
PE of the 8-PE example array. Only as much of the table as
corresponds to the range of x is stored in irnmediately accessible
memory (84 of the items in the table of the example). When x
goes out of range of the irnmediately accessible table (above 84 in
the example), more table must be brought in (Perhaps, a copy
stored in array memory but in more compact form).

SYSTEM ELEMENTS

ARRAY SUBSYSTEM

The concept of the ILLIAC IV is the use of an array of separate and
identical Processing Units. This architecture leads to programming
flexibility that is not found in the competing architectures. For example,
access time to memory is shorter and addressing memory is made flexible
by the existence of a separate address in each Processing Unit. In addition
the replication leads to economy of design and manufacture.

Control Unit (CU)

The Control Unit is the portion of the ILLIAC IV System that performs
the initial processing of instructions up to and including the generation of
detailed instruction microsequences for a step-by-step control of the
Processing Elements (PE). All execution of instructions in the array is
controlled by the instruction decoding stations in the CU.

The flow of instructions through the CU isshown in the figure by the green
arrows that form a path vertically descending through the figure. The
instruction stream enters the CU by being fetched from the array memory
(PEM's) to the instruction memory that is local to the CU. Fetching is done
in blocks of 16 instructions each. Management of this instruction memory
is assigned to an autonomous section of the Control Unit called the
Instruction Look Ahead (ILA). As the Advanced Station (ADVAST) is
finished with each instruction, the ILA sends the next instruction to
ADVAST for initial decoding. The ILA checks that the next instruction is
in the instruction memory, and if it is not, the ILA fetches it and its whole
block of 16 instructions. Since the ILA keeps track of the instructions in
terms of their memory addresses, its operation is completely transparent to
all programmers.

The instruction set has two general types of instructions: those used
primarily to control the internal operations of the CU (ADVAST
instructions) and those used primarily to control Processing Unit (PU)
operations (FINSTIPE instructions). The instructions that specify the CU
operation (ADVAST instructions) are used for such functions as loop

control and interrupt control. The FINST/PE instructions, which control
the operation of the 64 pEts executing in parallel, may require some
preliminary operation to be performed by the ADVAST (e.g., operations
such as address arithmetic or the obtaining of a literal to append to the
instruction). . .

7 .. 8

r.:,um-

When the instruction reaches ADVAST, it is decoded partially to determine
which type it is, and ADVAST operations are performed on it as
required. ADVAST has access to four accumulators, a 64-word local
operand store, and miscellaneous registers. I f the instruction concerns these
registers only, it is executed entirely a t ADVAST. If the instruction calls
for PE operations, ADVAST may be required to do some preparation,

I FROM ALL PEM'S

INSTRUCTION
INSTRUCTION

LOOK-AHEAD

ADVANCEDMAINTENANCE
STATION

I

INSTRUCTIONtolfrom

1 F]DESCRIPTOR
CONTROLLER

CONTROL DATA AND CONTROL MODE STATUS
BUS ADDRESS BUS BUS FOR 64 PE'S

Control Unit

especially in the address/literal field of the instruction. Instructions that
have been completed by ADVAST are then discarded. Those that are
intended for execution by the array of PE's are passed to the Final
Instruction Queue (FINO) with the ADVAST-prepared address/literal
field. This revised instruction stream is now fed to the Final Station
(FINST) which issues commands to {he PE's on the basis of the instructions
it receives. The commands issued by the FlNST cause similar opera$m.gp
take place simultaneously in all the PE's.

ADVAST instructions affect nothing but ADVAST itself, and most
ADVAST operations on other instructions are such that ADVAST and
FlNST can operate most o f the t ime independently of ope
another. Consequently, the ADVAST operations can be carried on at the
same time as the executions of some previous instruction in the FlNST and
PE's. The FlNQ is composed of eight instruction storage positions that
allow timesmoothing between ADVASTand FINST. This overlap between
ADVAST and FlNST causes the Processing Elements to be kept
continuously busy, as long as the number of ADVAST instructions is not
too great in any given segment of code.

An occasional instruction may rguire cooperation between ARVAST and
FINST, or the PE's. These instructions will cause ADVAST to wait until all
previous instructions are completed, a t all stations, before their execution
can proceed.

ADVAST executes those portions of the code which can be called
housekeeping and has a number of facilities to aid it in this task. One of
these i s the local operand store which serves several functions. For example,
it may contain index words that are designed primarily for the control of
loops of instructions; it may contain numerical variables that are to be
broadcast to the PE's in parallel; or it may contain "control vectors"
(words containing one bit per PE) that are destined to be transmitted to the
PE mode bits for on-off control of the PE's. These functions are not
explicit in the hardware, but the data in the local operand store is put to
explicit use only as a function of the program being executed in
ADVAST. The machine language of ILLIAC IV provides a number of
instructions for exercising this control. For example:

LOAD -Transfer one word from array memory to the local
operand store.

0 TX- -M -Test index (greater, less or equal as specified by
the letters supplied for "- -"I against the limit contained with
the index word, and modify the index by adding the signed
increment also contained within the index word.

0 LDL -Transfer a word from the local operand store to one of
the accumulators from which preparation of the addresslliteral
field of PE instructions takes place.

LDE -Transfer each bit of the accumulator (assumed to
contain a control vector) to the mode bit of the corresponding
PE.

0 SETC -Transfer the mode bit (a bit in the PE which turns it
on and off) from each PE to the corresponding bit number of
the accumulator.

LEAD0 - Convert the leading ONE of the accumulator
(assumed loaded by a SETC instruction) into i ts corresponding
bit number (which is now the PE number of the successful
PE).

The Memory Service Unit (MSU) resolves the conflicts of the three users of
array memory: 110, FINST, and ILA. It also transmits the appropriate
address to memory and exercises control over the memory cycle.

The Test Maintenance Unit (TMU) provides the control channel to the CU
from the 6 6700 and the manual maintenance panel.

Processing Unit

A Processing Unit (PU) functions as a general-purpose computer under the
direction of the CU. All of the 64 PU's in the ILLIAC IV System are
electrically, mechanically, and functionally identical. Each PU consists of a
Processing Element (PE), a Memory Logic (MLU)., and a Processing Element

Memory (PEM). Data and control inputs from the PE and MLU are shown
below.

Tolfrom

Other Processing~lemia%

I 	 I
I 	 MEMORYPROCESSING ELEMENT

ELEMENT LOGIC
MEMORY

I (PEM) I
I 	 I

+ 	 1 , Tdfrom
110 SubsystemTolf rom To Control Unit

Control Unit

Processing Unit Data and Control Paths

For control, the PE and MLU receive enable signals from the CU for the
sequential enabling of data paths and logic during instruction execution and
for controlling the reading and writing in the PEM. In addition, the CU
monitors and controls the status of the PE's by using one input and one
output of the mode logic in each PE. Similarly, it monitors the memory
protect status of the PEM's by using an output from each MLU.

Processing Element

The PE is the execution portion of the PU and is devoid of al l independent
control with the exception of mode, which may be set by some data
dependent conditions. Mode control permits a PE to accept or ignore a
broadcast control sequence from the CU, dependent on i t s current
status. The PE is essentially a four-register arithmetic unit, as shown in the
figure, capable of executing a full repertoire of instructions having 64-bit,
32-bit, or 8-bit operands. Further, operations involving 64-bit and 32-bit
words can be done in either fixed-point or floating-point representation.

An arithmetic unit in the PE combines a carry-save adder tree and parallel
adder with carry look-ahead logic to give a floating-point multiply in 9

Processing Unit

clocks and a floating-point add in 5 clocks. Both times include
post-normalization.

The instruction set of the PE is that of a largescale, general-purpose digital
computer. Floating point arithmetic in both 64-bit and 32-bit words is
provided, with options for rounding and normalization. Full word
operations, 8-bit byte operations, operations ignoring exponents, operations
using exponents only, and operations ignoring the4gns are among the
instructions provided in the arithmetic group. A full set of tests is generated
by making al l registers addressable and providing all possible
comparisons. Test results are set into a mode bit which may be used to

- - -

I
." .,, ..-m, . ..""L"".,."

ELEMENTS

M REGISTER ADDRESS

(ADDRESS) ADDER

X REGISTER
INDEXY

,ADDRESS
PEM DATA dTO PE

Processing Element

direct the flow of the instruction execution. Bit manipulation, shifts and
logical operations are also included in the instructions set.

Processing Element Memory

The PEM provides the high speed, random access, primary storage for the
ILLlAC IV. Each PEM provides storage for 204864-bit words, which totals
131,072words. To obtain the high speed necessary for array operation, the
PEM has been implemented using semiconductor memory techniques. The
PEM interfaces with, and is directly controlled by, the MLU.

The first 128 words of each PEM can be write-protected by setting an
appropriate control bit. If a write is attempted in any of the word locations
0 through 127when the bit is set, the memory cycle will not occur.

Memory Logic Unit

The MLU controls and effects the transfer of data between the PEM, the
CU, the PE, and the 110 Subsystem. The MLU also enables non-memory
data transfers between the CU and the PE. In addition to the timing and
control logic for PEM operations, the MLU contains a memory information
register used for the temporary storage of data to be written into or read
from the PEM.

DISK Fl LE SUBSYSTEM

The ILLIAC IV Disk File Subsystem is based upon Burroughs' continuing
development in head-per-track disk files. In each Storage Unit (SU),
containing one independently rotating disk, 128 of these heads are
simultaneously written or read, to achieve a data rate of 502X lo6 bits per
second. Capacity is 78,643,200bits of data storage per Storage Unit. The
disk in each Storage Unit rotates at 1530 rpm, for a rotation period of 39.2
ms, and an average access time of 19.6ms for a single item. For multiple
items, the Optimizer contained within the I10Subsystem is capable of up to

Disk File Subsystem

24 separate disk accesses within the 39.2 ms period. Upto 16 Storage Units
are serviced by a single Electronics Unit (EU). The ILLIAC IV System is
designed to accept two EU's, for a combined storage capacity of
2,516,582,400 bits and a transfer of 1.004 billion bits per second. Each of
the 128 tracks is split into three data lines, at one third the data rate, for
interface to the Disk File Controller (DFC), so that there are 384. data lines
between the EU and DFC. When the EU is not busy, these same lines are
used to continually transmit the present rotational position (address) of all
sixteen storage disks to the Optimizer.

I10 SUBSYSTEM

The I10 Subsystem, shown in the system diagram on the right, consists of
the Descriptor Controller (DC), I/O Switch (IOS), Buffer I10 Memory
(BIOM), and Disk File Controllers (DFC).

The interface between the I/O Subsystem and the B 6700 control computer
is designed to take advantage of the existing properties of the B 6700, while
keeping simple the interface to the ILLIAC IV array. Control words are
received over the scan bus interface provided from the B 6700 processor,
and results are described in words transmitted back over this same interface.

TWO data paths exist between the B 6700 Subsystem and the I/O
Subsystem, one path being the Buffer I/O Memory (BIOM), and the other
path leading directly into the Descriptor Controller (DC). The BlOM
functions as a module of B 6700 memory, as seen from the B 6700,
handling data transfers from the B 6700 into the I/O Subsystem. As seen
from the ILLIAC IV system diagram on the next page, the BlOM can
transfer data either onto the disk file or directly into the array
memory. The data path to the DC uses the 48-bit word interface of the
B 6700 multiplexor, which allows the DC to share a memory bus with the
multiplexor; 9
The DFC consists of two controllers that execute descriptors held in the DC
for transfers between disk and array, disk and BIOM, BlOM and array, and
real-time link and array. All transfers involving the array are via the IOS.

The IOS buffers and distributes data between the DFC and the ILLlAC IV
array. The IOS has a 256-bit bidirectional interface with each of the two
DFC units and a 1024-bit bidirectional interface with the ILLIAC IV
array. The IOS also provides a 1024-bit wide external data link to the array.

The DC receives control words over the scan bus interface and fetches I/O
descriptors over the multiplexor word interface in response to these control
words. The DC sends result descriptors over the scan bus upon the
completion of 110 transactions. Certain I10 descriptors cause the DC to
send words of data, fetched over the multiplexor word interface, to the CU,
where they are treated as instructions by the TMU. There is a 48-bit
bidirectional interface between DC and TMU for these transfers.

B 6700 CONTROL COMPUTER SUBSYSTEM

The primary functions of the B 6700 control computer are to execute the
supervisory program and prepare programs for the ILLIAC IV by
assembling, compiling, etc. The supervisory program schedules jobs for the
array; maintains the parallel disk files; transmits control records
(descriptors) to the 110 Subsystem, which directs the I10 transactions in
and out of the array; responds to interrupt conditions from the array and
elsewhere; and communicates with the user and operator.

As a secondary function, the B 6700 has associated with it a full range of Data Communications
peripheral equipments. Consequently, the B 6700 provides the ILLIAC IV
system with such peripheral capabilities as may be needed. On-line data Because the B 6700 is designed for multiprocessing, the system readily

the system by including a Data accommodates applications and procedures requiring datacommunication may be added to
Communication Processor and line adapters.

B 6700 CONTROL COMPUTER SUBSYSTEM

L

J'!

communications. The B 6350Data Communications Processor (DCP) is the
heart of the data communications network. It is a small, special-purpose
computer containing the registers, logic, and translation ability to perform
all the basic functions associated with sending and receiving data. Up to 8
DCP's can be connected to a B 6700 and each can handle up to 256
communications lines. Adapters are available to handle line speeds up to
9600 baud,Touch-Ton&, Audio Response, and Automatic Dial Out. The
number of lines mat can be serviced by a DCP varies as a function of line
speed, loading, and discipline as well as the terminal mix and the

PROCESSOR
application.

An interface with the ARPA Network has been developed for users needing
this type of data communication, and will be installed on the initial ILLlAC
IV at Ames Laboratories.

ARPA INTERFACE I

ADAPTER 6~egisteredtrademark of the AT & T Co.

DESCRIPTOR I I CONTROL ICONTROLLER ARRAY SUBSYSTEM
UNIT

I - 128 J
(DC)

I
I

1 1 I
ELECTRONICs DlSK FlLEI384 C O N T R ~ ~ I I 1

(DFC-1) 256
PE PE PE PEI I

I I 1 2 3
. . a 64

I --- I I 1 I 1 '128

DlSK FlLE INPUTOUTPUT I1384

CONTROLLER N0.2 SWITCH PEM PEM PEM . a . PEM

I (DFC-2) -256 (10s) I
I

1024
II

.
1 IDlSK FILE SUBSYSTEM INTERFACEL,,,,,,, I

NOTE
1/0 SUBSYSTEM I The numbersshow how many data b m are

I transm~ttedin parallel on any glven data path.

ILLIAC I VSYSTEM DIAGRAM

I

DATA FLOW

The history of one program being executed in the ILLIAC IV can be
tracked by tracing the sequential steps in the flow of data during the
execution of a job from the gleam in the operator's eye to the production
of the final printout. The steps in the data path are as follows.

Data enters the system from the peripherals of the B 6700, initially. I f the
data for this job is the result of output from a previous task, the data may
be found in a bulk store. This data will be moved from the external source,
whatever it is, to the parallel disk file before the job is executed.

For data coming from the bulk store, the data path is to the BIOM and then
to the ILLIAC disk (Path 1B in the figure). For data brought in from
peripheral devices, the path is shown as "IA" through the multiplexor in
the figure. The B 6700 MCP controls this path. At the programmer's
option, the B 6700 may perform formatting or preprocessing of the data on
entrance. However, it is expected that such formatting or preprocessing can
be done more expeditiously on the ILLlAC IV array, which will have the
additional advantage of avoiding the potentially inefficient situation of
having the array idle waiting on the B 6700.

Array processing starts by taking all the data collected on the disk and
moving only that portion required by the beginning of the program into the
array memory; that is, the PEMs are collectively treated as a single memory
bank (path "2" in the figure). This move is under the control of the MCP
in the B 6700.

To make all data transfers efficient, an Optimizer is included in the I10
Subsystem so that many independent blocks of data, which could be
transferred together, can be included into a single transfer operation with a
single access time, without the necessity of being combined under a single

hardware address. The Optimizer controls will allow the MCP to put
together as many as 15 disk file a&lresses into a single package, which,
barring conflicts, will all be read during a single disk revolution of 40 ms.

8 -.-8 y 3 3.;
-, 7 - 3 --

As processing proceeds in the array, various data objects will be created in
the array, and sent to disk (path "3" of the figure). These include restart
information, overlayed information in the case of problems that do not f i t
in main memory, and intermediate results. In the present design of ILLIAC
IV, the B 6700 MCP has the responsibility of disk space assignment, and
such actions are initiated by an interrupt to the B 6700 MCP which issues
the control words to the 110 Subsystem.

At the end of data manipulation, all results of array processing will be on
disk, and outputs destined for users are transferred, via BIOM, to
peripherals via the B 6700 multiplexor. Outputs destined for use by jobs
for subsequent execution on the array are transferred to the bulk
store. These transfers are under the control of the B 6700 MCP.

Use of the ILLIAC LV may, in some cases, involve postprocessing executed
by programs in the B 6700. In general, use of the ILLlAC IV array for
postprocessing is encouraged for the same reasons as for preprocessing.

The flow of both data and instructions is essentially identical up to the
point of being inserted into the PEMs. The one exception is in
preprocessing of data recommended for execution in the array rather than
in the B 6700. The corresponding action on program instructions is
compiling which will be done on the B 6700 for the program to be run on
the array.

Once in the array processor, however, flow of data and instructions i s
different. Data generally is segregated into the individual Processing
Element Memories, and is fetched to a Processing Element from i t s own
Processing Element Memory, and restored into that Processing Element
Memory. Two mechanisms break through this segregation of data into

separate Processing Element
Memories. The first is called
"routing", the capability of the
Processing Elements to shift data
a mo ng themselves. The second
mechanism lies in the Control Unit
which sees all of the Processing Ele-
ment Memories as one single
memory bank. The Control Unit (a
65th, different processor, itself) can
fetch any word from this memory
bank. In some cases it will "broad-
cast" such a word of data in parallel
to all Processing Elements.

Programs stored in the memory
bank are seen by the Control
Unit. Instructions are fetched in
blocks of 16 instructions at a time,
and fed, one instruction at a time,
into the instruction decoding
m a c h i n e r y o f the Control
Unit. Although 64 data streams
can be worked on simultaneously,
- one going between each Pro-
cessing Element and i t s Processing
Element Memory, only one
instruction stream is being decoded
(that instruction stream being
fetched to the Control Unit and
executed from there). lnstructions
are expected normally to be read-
only, and to be stored in the first
6.25% of memory addresses where
protection against writing is avail-
able.

PERIPHERALS

BULK

STORAGE

B 6700 SYSTEM

CONTROLQ

I-

Data-Flowin ILLIAC IV

SOFTWARE

The l L L l AC IV software currently includes a macro-assembler, a
FORTRAN compiler, an operating system, and a basic library of intrinsic
functions and utility routines. A brief description of each follows:

ASSEMBLER - The I L L I A C I V assembly language
corresponds directly to the ILLlAC IV set of instructions. In
addition, there is a set of pseudo-opcodes which handles such
activities as allotting storage and loading data in the Processing
Element* Memories. The assembler also has numerous control
options for simplifying the updating files.

FORTRAN COMPILER - ILLIAC FORTRAN is an extension
of ANSI FORTRAN. The additional syntax makes it possible
to operate explicitly on vectors and to express the kind of
parallelism exploitable on the l LLlAC IV.

To distinguish operations or vectors from those on subscripted
variables, the concept of a binary vector has been
introduced. A binary vector is a string of bits; the number of
bits being equal to the length of the vector with which it will
be used. The bits in the binary vector can be set and reset
either explicitly or implicitly by logical operations. When
operations on a vector ararequired, a binary vector is used as a
subscript. Code is emitted by the compiler so that the stated
operation is performed on all those elements of the vector
whose corresponding bits are set in the binary vector.

I L L l AC FORTRAN affords highly sophisticated matrix
manipulations through its vector operations capability. The
columns to be manipulated can be selected by placing a binary
vector in the column subscript position. A specific row can be
selected by using a scalar in the row subscript position; a
different row element for each of the columns can be selected
by placing an integer vector in the row subscript position. This
integer vector would contain a row number corresponding to
each column. Thus, for example, it is possible to operate on
every other member of the diagonal of a matrix in one
FORTRAN statement.

To aid the programmer further, the compiler allows
subprograms to be compiled separately and assembler code to
be interspersed with the ILLIAC FORTRAN code. A wide
range of file maintenance features is also included.

INTRINSICS AND UTl LlTlES - A library of the standard
intrinsic functions has been written. Included are the
trigonometric functions, the natural logarithm, the
exponential, and square root. They all have an accuracy of 15
to 16 octal characters. Many utility routines have been adapted
for the ILLIAC IV. Among these are routines to handle
Newton-Rapheson solutions, eigen-value problems, fast Fourier
transforms, and Monte Carlo techniques.

OPERATING SYSTEM -The operating system controls the
l LLlAC IV environment. The operating system prepares a job,
schedules it, moves its data and its program in and out of the
array, and handles all ILLIAC disk transfers. The operating
system can control the tasks for several jobs simultaneously.

The width of a vector is immaterial. As far as the programmer
is concerned, the operation is done simultaneously on al l
elements specified by the binary vector.

